精英家教网 > 高中数学 > 题目详情
12.在长方体ABCD-A1B1C1D1中,AB=$\sqrt{2}$,BC=1,AA1=$\sqrt{3}$
(1)求异面直线AD1与BC所成角的大小
(2)求异面直线A1B与AD1所成角的余弦值.

分析 (1))由AD∥BC,得∠D1AD是异面直线AD1与BC所成角,由此能求出异面直线AD1与BC所成角.
(2)由AD1∥BC1,得∠A1BC1是异面直线A1B与AD1所成角,由此能求出异面直线A1B与AD1所成角的余弦值.

解答 解:(1)∵AD∥BC,∴∠D1AD是异面直线AD1与BC所成角,
∵在长方体ABCD-A1B1C1D1中,AB=$\sqrt{2}$,BC=1,AA1=$\sqrt{3}$,
∴AD=1,DD1=$\sqrt{3}$,tan∠D1AD=$\frac{D{D}_{1}}{AD}$=$\sqrt{3}$,
∴∠D1AD=60°,
∴异面直线AD1与BC所成角为60°.
(2)∵AD1∥BC1,∴∠A1BC1是异面直线A1B与AD1所成角,
∵A1B=$\sqrt{2+3}$=$\sqrt{5}$,BC1=$\sqrt{1+3}$=2,A1C1=$\sqrt{2+1}$=$\sqrt{3}$,
∴cos∠A1BC1=$\frac{{A}_{1}{B}^{2}+B{{C}_{1}}^{2}-{A}_{1}{{C}_{1}}^{2}}{2×{A}_{1}B×B{C}_{1}}$=$\frac{5+4-3}{2×\sqrt{5}×4}$=$\frac{3\sqrt{5}}{20}$.
∴异面直线A1B与AD1所成角的余弦值$\frac{3\sqrt{5}}{20}$.

点评 本题考查异面直线所成角的大小的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知$\frac{tanα+1}{tanα-1}$=2,则cos2α=(  )
A.-$\frac{3}{5}$B.$\frac{3}{5}$C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.将4位老师分配到3个学校去任教,共有分配方案(  )
A.81种B.12种C.7种D.256种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求直线$\left\{\begin{array}{l}{x=-1+3t}\\{y=2-4t}\end{array}\right.$的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.有一个综艺节目,选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐,选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金,某机构随机抽取50个参与节目的选手的年龄作为样本进行分析研究,由此得到如下频数分布表(所有参与节目的选手年龄都在[5,65)内).
选手年龄[5,15)[15,25)[25,35)[35,45)[45,55)[55,65)
 频数 2 12 16 10 73
(Ⅰ)在表中作出这些数据的频率分布直方图;

(Ⅱ)若将频率视为概率,从参与节目的选手中随机抽取3位(看作有放回地抽取),求年龄在[35,45)内的选手人数X的分布列、数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等差数列{an}的前n项和为Sn,且a4=5,S9=54.
(1)求数列{an}的通项公式与Sn
(2)若bn=$\frac{1}{{{S_n}-2n}}$,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,且∠DAB=60°,侧面PAD为正三角形,其所在平面垂直于底面ABCD,G为AD边的中点,E为BC所在直线上的一点
(1)求证:平面PAD⊥平面PGB;
(2)记$\overrightarrow{BE}$=λ$\overrightarrow{BC}$,当平面PDC和平面PGE所成的二面角的余弦值为$\frac{\sqrt{5}}{5}$时,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}满足a1=$\frac{1}{2}$,an+1an=2an+1-1,令bn=an-1.
(1)求证:数列{$\frac{1}{{b}_{n}}$}为等差数列;
(2)设cn=$\frac{{a}_{n+1}}{{a}_{n}}$,求证:数列{cn}的前n项和Tn<n+$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若点A,B在曲线y=$\sqrt{{x}^{2}+2}$上,则$\overrightarrow{OA}$•$\overrightarrow{OB}$的最小值为2.

查看答案和解析>>

同步练习册答案