精英家教网 > 高中数学 > 题目详情
4.如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,且∠DAB=60°,侧面PAD为正三角形,其所在平面垂直于底面ABCD,G为AD边的中点,E为BC所在直线上的一点
(1)求证:平面PAD⊥平面PGB;
(2)记$\overrightarrow{BE}$=λ$\overrightarrow{BC}$,当平面PDC和平面PGE所成的二面角的余弦值为$\frac{\sqrt{5}}{5}$时,求λ的值.

分析 (1)连结BD,由正三角形性质的BG⊥AD,由此能证明BG⊥平面PAD,即可证明平面PAD⊥平面PGB;
(2)以G为原点,建立空间直角坐标系G-xyz,由此能利用平面PDC和平面PGE所成的二面角的余弦值为$\frac{\sqrt{5}}{5}$时,求λ的值.

解答 (1)证明:连结BD.
∵ABCD为菱形,且∠DAB=60°
∴△ABD为正三角形.
又G为AD的中点,
∴BG⊥AD.
又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
∴BG⊥平面PAD.
∵BD?平面PGB,
∴平面PAD⊥平面PGB;
(2)解:∵△PAD为正三角形,G为AD的中点,∴PG⊥AD.
∵PG?平面PAD,由(1)得:PG⊥GB.
又由(1)知BG⊥AD.∴PG、BG、AD两两垂直.
故以G为原点,建立如图所示空间直角坐标系G-xyz,PG=PDcos30°=$\sqrt{3}$,GB=ABsin60°=$\sqrt{3}$
所以G(0,0,0),D(0,1,0),P(0,0,$\sqrt{3}$),C($\sqrt{3}$,2,0),E($\sqrt{3}$,2λ,0)
所以$\overrightarrow{PD}$=(0,1,-$\sqrt{3}$),$\overrightarrow{PC}$=($\sqrt{3}$,2,-$\sqrt{3}$),
设平面PCD的法向量为$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{y-\sqrt{3}z=0}\\{\sqrt{3}x+2y-\sqrt{3}z=0}\end{array}\right.$,
令z=1,则x=-1,y=$\sqrt{3}$,所以$\overrightarrow{n}$=(-1,$\sqrt{3}$,1),
设平面PGE的法向量为$\overrightarrow{m}$=(a,b,c),则
因为$\overrightarrow{PG}$=(0,0,-$\sqrt{3}$),$\overrightarrow{GE}$=($\sqrt{3}$,2λ,0),
所以$\left\{\begin{array}{l}{-\sqrt{3}c=0}\\{\sqrt{3}a+2λb=0}\end{array}\right.$,所以取$\overrightarrow{m}$=(2$\sqrt{3}$,-$\frac{3}{λ}$,0)
因为平面PDC和平面PGE所成的二面角的余弦值为$\frac{\sqrt{5}}{5}$,
所以$\frac{|-2\sqrt{3}-\frac{3\sqrt{3}}{λ}|}{\sqrt{5}•\sqrt{12+\frac{9}{{λ}^{2}}}}$=$\frac{\sqrt{5}}{5}$,所以λ=-$\frac{1}{2}$.

点评 本题考查直线与平面垂直的证明,考查二面角的余弦值的求法,考查平面与平面垂直的证明,解题时正确运用向量法是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知角α的终边过点P(-4,-6sin150°),则sin2α的值为(  )
A.-$\frac{3}{4}$B.$\frac{4}{3}$C.$\frac{12}{25}$D.$\frac{24}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.从甲、乙、丙三名学生中任意安排2名学生参加数学、外语两个课外活动小组的活动,画出相应的树型图,计算有多少种不同的安排方案.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在长方体ABCD-A1B1C1D1中,AB=$\sqrt{2}$,BC=1,AA1=$\sqrt{3}$
(1)求异面直线AD1与BC所成角的大小
(2)求异面直线A1B与AD1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.为了解某种树苗培育情况,研究所在苗圃基地花木园中随机抽出30株树苗的主体高,编成如图所示的茎叶图,若苗主体高在169cm以上(包括169cm)定义为“优质苗”,高在169cm以下(不包括169cm)定义为“普苗”
(1)如果用分层抽样的方法从“优质苗”和“普苗”中抽取5株,再从这5株中选2株,那么至少有1株是“优质苗”的概率是多少?
(2)根据统计学的基本思想,用样本估计总体,把频率作为概率,若从该花木园随机选3株出售,价格是:“优质苗”每株3,“普苗”每株1(单位:千元)用X表示销售3株的总收入,试写出X的分布列,并求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.对每个x,y是y1=2x,y2=x+2,y3=-$\frac{3}{2}$x+12三个值中的最小值,则当x变化时,函数y的最大值是6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,角A,B,C对应的边分别为a,b,c,若b-acosB=acosC-c,则△ABC的形状是(  )
A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.(x2-x+2y)7的展开式中,x4y4的系数为1680.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知p:“a≥$\frac{12}{t+\frac{1}{t}}$对t∈(0,+∞)恒成立”,q:“直线x-2y+a=0与曲线y-1=$\sqrt{4+2x-{x}^{2}}$有2个公共点”,则¬p是q的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案