精英家教网 > 高中数学 > 题目详情
2.已知$\frac{tanα+1}{tanα-1}$=2,则cos2α=(  )
A.-$\frac{3}{5}$B.$\frac{3}{5}$C.-$\frac{4}{5}$D.$\frac{4}{5}$

分析 由已知即可解得tanα的值,然后利用同角三角函数基本关系式,二倍角公式化简所求即可计算求值.

解答 解:∵$\frac{tanα+1}{tanα-1}$=2,
∴解得:tanα=3,
∴cos2α=$\frac{co{s}^{2}α-si{n}^{2}α}{co{s}^{2}α+si{n}^{2}α}$=$\frac{1-ta{n}^{2}α}{1+ta{n}^{2}α}$=$\frac{1-9}{1+9}$=-$\frac{4}{5}$.
故选:C.

点评 本题主要考查了同角三角函数基本关系式,二倍角公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.某普通高中组队参加中学生辩论赛,文科班推荐了3名男生、4名女生,理科班推荐了3名男生、2名女生,他们各有所长,总体水平相当,学校拟从这12名学生随机抽取3名男生、3名女生组队集训.
(Ⅰ)求理科班至少有2名学生入选集训队的概率;
(Ⅱ)若先抽取女生,每次随机抽取1人,设X表示直到抽到文科班女生时所抽到的理科班女生的人数,求X的分布列和均值(数学期望).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,直角三角形ABC中,∠BAC=60°,点F在斜边AB上,且AB=4AF.D,E是平面ABC同一侧的两点,AD⊥平面ABC,BE⊥平面ABC,AD=3,AC=BE=4.
(Ⅰ)求证:平面CDF⊥平面CEF;
(Ⅱ)点M在线段BC上,异面直线CF与EM所成角的余弦值为$\frac{1}{4}$,求CM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设点O为四面体ABCD外接球的球心,若|$\overrightarrow{AB}$|=3,|$\overrightarrow{AD}$|=4,则$\overrightarrow{AO}$•$\overrightarrow{BD}$=$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.角-330°的终边所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知i2=-1,复数z=i(1-i),则|z|=(  )
A.1B.$\sqrt{2}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知角α的终边过点P(-4,-6sin150°),则sin2α的值为(  )
A.-$\frac{3}{4}$B.$\frac{4}{3}$C.$\frac{12}{25}$D.$\frac{24}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数y=ax2+bx+c,其中a,b,c∈{0,1,2,3,4},则不同的二次函数的个数共有(  )
A.125B.15C.100D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在长方体ABCD-A1B1C1D1中,AB=$\sqrt{2}$,BC=1,AA1=$\sqrt{3}$
(1)求异面直线AD1与BC所成角的大小
(2)求异面直线A1B与AD1所成角的余弦值.

查看答案和解析>>

同步练习册答案