精英家教网 > 高中数学 > 题目详情
10.设点O为四面体ABCD外接球的球心,若|$\overrightarrow{AB}$|=3,|$\overrightarrow{AD}$|=4,则$\overrightarrow{AO}$•$\overrightarrow{BD}$=$\frac{7}{2}$.

分析 利用平面向量加减运算的几何意义得$\overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA}$,$\overrightarrow{AD}=\overrightarrow{OD}-\overrightarrow{OA}$,将两式平方相减即可得出答案.

解答 解:设外接球半径为r,则OA=OB=OD=r,
∵|$\overrightarrow{AB}$|2=($\overrightarrow{OB}-\overrightarrow{OA}$)2=${\overrightarrow{OB}}^{2}+{\overrightarrow{OA}}^{2}-2\overrightarrow{OA}•\overrightarrow{OB}$=2r2-2$\overrightarrow{OA}•\overrightarrow{OB}$=9,
|$\overrightarrow{AD}$|2=($\overrightarrow{OD}-\overrightarrow{OA}$)2=${\overrightarrow{OD}}^{2}+{\overrightarrow{OA}}^{2}-2\overrightarrow{OD}•\overrightarrow{OA}$=2r2-2$\overrightarrow{OD}•\overrightarrow{OA}$=16.
∴|$\overrightarrow{AD}$|2-|$\overrightarrow{AB}$|2=2$\overrightarrow{OA}•\overrightarrow{OB}$-2$\overrightarrow{OD}•\overrightarrow{OA}$=7,
∴2($\overrightarrow{OB}-\overrightarrow{OD}$)$•\overrightarrow{OA}$=7,即$\overrightarrow{DB}•\overrightarrow{OA}=\frac{7}{2}$.
∴$\overrightarrow{AO}•\overrightarrow{BD}=\frac{7}{2}$.
故答案为:$\frac{7}{2}$.

点评 本题考查了平面向量的数量级运算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.多次执行如图所示的程序框图,输出的$\frac{m}{n}$的值会稳定在某个常数附近,则这个常数为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知:(x+2)8=a0+a1(x+1)+a2(x+1)2+…+a8(x+1)8,其中ai=(i=0,1,2…8)为实常数,则a1+2a2+…+7a7+8a8=1024.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.己知函数f(x)=$\frac{1}{2}$x2+ln(-x).数列{xn}(xn<0)的第一项x1=-$\frac{2}{3}$,其前n项和为Sn,以后各项及Sn均按如下方式给定:曲线y=f(x)在点(Sn,f(Sn))处的切线的斜率为xn-2(n≥2,n∈N+).
(1)试计算S1、S2、S3、S4,并由此猜想Sn(只含n)的表达式;
(2)证明(1)的猜想,并求出数列{xn}的通项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.从装有2个红球,2个白球和1个黑球的袋中逐一取球,已知每个球被抽到的可能性相同,若抽取的不放回,设取完红球所需的次数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某化工厂生产一种溶液,按市场要求,杂质含量不能超过0.1%,若最初生产出的溶液含杂质2%,需要进行过滤,且每过滤一次可使杂质含量减少$\frac{1}{2}$,则要使产品达到市场要求至少应过滤5次.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知$\frac{tanα+1}{tanα-1}$=2,则cos2α=(  )
A.-$\frac{3}{5}$B.$\frac{3}{5}$C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知a、b、c分别为△ABC三个内角A、B、C的对边,若cosB=$\frac{4}{5}$,a=5,△ABC的面积为12,则$\frac{a+c}{sinA+sinC}$的值等于$\frac{25}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求直线$\left\{\begin{array}{l}{x=-1+3t}\\{y=2-4t}\end{array}\right.$的倾斜角.

查看答案和解析>>

同步练习册答案