【题目】点分别是正方体的棱的中点,如图所示,则下列命题中的真命题是________(写出所有真命题的编号).
①以正方体的顶点为顶点的三棱锥的四个面中最多只有三个面是直角三角形;②点在直线上运动时,总有;③点在直线上运动时,三棱锥的体积的定值;④若点是正方体的面内的一动点,且到点和距离相等,则点的轨迹是一条线段.
科目:高中数学 来源: 题型:
【题目】【2018河南濮阳市高三一模】已知点在抛物线上, 是抛物线上异于的两点,以为直径的圆过点.
(I)证明:直线过定点;
(II)过点作直线的垂线,求垂足的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知直线的参数方程是(是参数),圆的极坐标方程为.
(Ⅰ)求圆心的直角坐标;
(Ⅱ)由直线上的点向圆引切线,求切线长的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的顶点为平面直角坐标系的坐标原点,焦点为圆的圆心.经过点的直线交抛物线于两点,交圆于两点,在第一象限,在第四象限.
(1)求抛物线的方程;
(2)是否存在直线使是与的等差中项?若存在,求直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数.
(1)已知的解集为,求实数的值;
(2)已知,设、是关于的方程的两根,且,求实数的值;
(3)已知满足,且关于的方程的两实数根分别在区间内,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在矩形中,AB=2AD,为DC的中点,将△ADM沿AM折起使平面ADM⊥平面ABCM.
(1)当AB=2时,求三棱锥的体积;
(2)求证:BM⊥AD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中中,直线,圆的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系.
(1)求直线和圆的极坐标方程;
(2)若直线与圆交于两点,且的面积是,求实数的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com