精英家教网 > 高中数学 > 题目详情
14.语文、外语、数学、物理、化学5门课的任课老师和课代表站成一排照相.
(1)5名课代表必须排在一起的排法有多少种?
(2)5名老师互不相邻的排法有多少种?
(3)语文老师不能站在最左边、数学老师不能站在最右边的排法有多少种?

分析 (1)利用捆绑法,即可得出结论;
(2)5名老师互不相邻,利用插空法;
(3)利用间接法,可得结论.

解答 解:(1)5名课代表必须排在一起,作为整体,与5门课的任课老师全排,有A66种方法,5名课代表之间,有A55种方法,∴5名课代表必须排在一起的排法有A66A55=86400种;
(2)5名老师互不相邻,利用插空法,5名课代表之间,有A55种方法,形成6个空,插入5名老师,有A65种方法,∴5名老师互不相邻的排法有A55A65=86400种;
(3)利用间接法,10个人全排,有A1010种方法,语文老师站在最左边,有A99种方法,数学老师站在最右边,有A99种方法,语文老师站在最左边且数学老师站在最右边,有A88种方法,∴语文老师不能站在最左边、数学老师不能站在最右边的排法有A1010-2A99+A88=73A88

点评 本题考查排列知识的运用,考查学生的计算能力,正确计算是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.班主任想对本班学生的考试成绩进行分析,决定从全班25名女同学,15名男同学中随机抽取一个容量为8的样本进行分析.
(1)如果按性别比例分层抽样,男女生各抽取多少位才符合抽样要求?
(2)随机抽出8位,他们的数学、地理成绩对应如表:
学生编号12345678
数学分数x6065707580859095
地理分数y7277808488909395
①若规定85分以上(包括85分)为优秀,在该班随机调查一位同学,他的数学和地理分数均为优秀的概率;
②根据如表,用变量y与x的相关系数或散点图说明地理成绩y与数学成绩x之间线性相关关系的强弱.如果有较强的线性相关关系,求y与x的线性回归方程(系数精确到0.01),如果不具有线性相关关系,请说明理由.
参考公式:
相关系数r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{{{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}^{\;}}^{\;}}$;回归直线的方程是:$\stackrel{∧}{y}$=b$\stackrel{∧}{x}$+a,
其中:b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$,$\overline{y}$是xi对应的回归估计值.
参考数据:$\overline{x}$≈77.5,$\overline{y}$≈84.9,$\sum_{i=1}^{8}({x}_{i}-\overline{x})^{2}$=1050,$\sum_{i=1}^{8}({y}_{i}-\overline{y})^{2}$≈456.9,$\sum_{i=1}^{8}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$≈687.5,$\sqrt{1050}$≈32.4,$\sqrt{456.9}$≈21.4,$\sqrt{550}$≈23.5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,则该几何体的体积为12+8π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若有5本小说,6本杂志,从这几本书中任取三本,其中必须包括小说和杂志,则不同的取法种数有135种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.学校选派5名同学参加“华约”“北约”“卓越联盟”自主招生考试,每项考试至少选派1人参加,共有多少种不同的选派方法?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.解下列对数方程.
(1)log2x-1(5x2+3x-17)=2;
(2)logx4+log2x=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.一台机器在一天内发生故障的概率为0.1,若这台机器一周5个工作日不发生故障,可获利5万元;发生1次故障仍可获利2.5万元;发生2次故障的利润为0元;发生3次或3次以上故障要亏损1万元,这台机器一周内可能获利的均值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数g(x)=x2-2x+m,f(x)是定义在[-2,2]上的奇函数,且当x∈(0,2]时,f(x)=2x-1,若对于任意x1∈[-2,2],使得g(x2)=f(x1),则实数m的取值范围是(  )
A.[-5,-2]B.(-5,-2)C.(2,5)D.[2,5]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,四棱锥P-ABCD中,四边形ABCD为矩形,△PAD为等腰三角形,∠APD=90°,平面PAD⊥平面ABCD,且AB=1,AD=2,E、F分别为PC、AB的中点
(Ⅰ)证明:EF∥平面PAD;
(Ⅱ)证明:PA⊥平面PCD;
(Ⅲ)求四棱锥P-ABCD的体积.

查看答案和解析>>

同步练习册答案