精英家教网 > 高中数学 > 题目详情
19.已知动圆过定点R(0,2),且在x轴上截得线段MN的长为4,直线l:y=kx+t(t>0)交y轴于点Q.
(1)求动圆圆心的轨迹E的方程;
(2)直线l与轨迹E交于A,B两点,分别以A,B为切点作轨迹E的切线交于点P,若|$\overrightarrow{PA}$|•|$\overrightarrow{PB}$|sin∠APB=|$\overrightarrow{PQ}$|•|$\overrightarrow{AB}$|.试判断实数t所满足的条件,并说明理由.

分析 (1)根据动圆过定点以及直线和x轴相交的弦长理由参数消元法即可求动圆圆心的轨迹E的方程;
(2)设A(x1,y1),B(x2,y2),x1≠x2,P(x0,y0),利用设而不求的思想,结合曲线在A,B处的切线方程,求出交点坐标借助向量数量积的关系进行转化求解即可.

解答 解:(1)设动圆圆心的坐标为(x,y),半径r,(r>0),
∵动圆过定点R(0,2),且在x轴上截得线段MN的长为4,
∴$\left\{\begin{array}{l}{{x}^{2}+(y-2)^{2}={r}^{2}}\\{{y}^{2}+4={r}^{2}}\end{array}\right.$,消去r得x2=4y,
故所求轨迹E的方程为x2=4y;
(2)实数t是定值,且t=1,下面说明理由,
不妨设A(x1,y1),B(x2,y2),x1≠x2
P(x0,y0),由题知Q(0,1),
由$\left\{\begin{array}{l}{y=kx+t}\\{{x}^{2}=4y}\end{array}\right.$,消去y得x2-4kx-4t=0,
∴$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}=4k}\\{{x}_{1}{x}_{2}=-4t}\end{array}\right.$,轨迹E在A点处的切线方程为l1:y-y1=$\frac{{x}_{1}}{2}$(x-x1),即y=$\frac{{x}_{1}}{2}$x-$\frac{{{x}_{1}}^{2}}{4}$,
同理,轨迹E在B处的切线方程为l1:y=$\frac{{x}_{2}}{2}$x-$\frac{{{x}_{2}}^{2}}{4}$,
联立l1,l2:的方程解得交点坐标P($\frac{{x}_{1}+{x}_{2}}{2}$,$\frac{{x}_{1}{x}_{2}}{4}$),即P(2k,-t),
由|$\overrightarrow{PA}$|•|$\overrightarrow{PB}$|sin∠APB=|$\overrightarrow{PQ}$|•|$\overrightarrow{AB}$|=2S△APB
得$\overrightarrow{PQ}$⊥$\overrightarrow{AB}$,即$\overrightarrow{PQ}$•$\overrightarrow{AB}$=0,
$\overrightarrow{PQ}$=(-2k,2t),$\overrightarrow{AB}$=(x2-x1,$\frac{{{x}_{2}}^{2}-{{x}_{1}}^{2}}{4}$),
∴-2k(x2-x1)+2t•$\frac{{{x}_{2}}^{2}-{{x}_{1}}^{2}}{4}$=0,
即2k(x2-x1)(t-1)=0,
则2k(t-1)=0,
则t=1,
故实数t是定值,且t=1.

点评 本题主要考查与圆有关的轨迹问题,涉及直线和抛物线的相交的位置关系,利用设而不求的数学思想是解决本题的关键.综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知c>0,设命题p:函数y=cx为减函数.命题q:当$x∈[{\frac{1}{2},2}]$时,函数f(x)=x+$\frac{1}{x}>\frac{1}{c}$恒成立.如果p或q为真命题,p且q为假命题,求c的取值范围(  )
A.$({0,\frac{1}{2}})$B.$[{\frac{1}{2},1}]$C.$({0,\frac{1}{2}}]∪[{1,+∞})$D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设a是实数,那么|a|<5成立的一个必要非充分条件是(  )
A.a<5B.|a|<4C.a2<25D.-5<a<5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四棱锥P-ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是等边三角形.
(1)证明:PB⊥CD;
(2)求二面角A-PD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知复数$z=\frac{10}{3+i}-2i$,其中i是虚数单位,则|z|=(  )
A.2$\sqrt{2}$B.2$\sqrt{3}$C.3$\sqrt{2}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若直线l1:ax+2y+6=0与直线${l_2}:x+(a-1)y+{a^2}-1=0$平行,则a=(  )
A..2或-1B..2C.-1D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).
在某次数学活动中,每位参加者需从所有的“三位递增数”中随机抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分,若能被5整除,但不能被10整除,得-1分,若能被10整除,得1分.
(Ⅰ)写出所有个位数字是5的“三位递增数”,并求其发生的概率;
(Ⅱ)若甲参加活动,求甲得分X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),其离心率为$\frac{{\sqrt{3}}}{2}$,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为4+2$\sqrt{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设曲线C的上、下顶点分别为A、B,点P在曲线C上,且异于点A、B,直线AP,BP与直线l:y=-2分别交于点M,N.
(1)设直线AP,BP的斜率分别为k1,k2,求证:k1k2为定值;
(2)求线段MN长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在四棱锥P-ABCD中,BC∥AD,PA⊥AD,平面PAB⊥平面ABCD,∠BAD=120°,且PA=AB=BC=$\frac{1}{2}$AD=2.
(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)求二面角B-PC-D的余弦值.

查看答案和解析>>

同步练习册答案