| A. | $2\sqrt{2}$ | B. | $±2\sqrt{2}$ | C. | 2 | D. | ±2 |
分析 由“若四边形面积最小,则圆心与点P的距离最小时,即距离为圆心到直线的距离时,切线长PA,PB最小”,最后利用点到直线的距离求出直线的斜率即可.
解答
解:如图,${S_{PACB}}=2{S_{△PAC}}=|{PA}|•|{AC}|=2|{PA}|=2\sqrt{{{|{PC}|}^2}-{{|{AC}|}^2}}=2\sqrt{{{|{PC}|}^2}-4}$,
∴当|PC|最小时,面积取最小值,而|PC|最小即为点C到直线l的距离d,
又$d=\frac{5}{{\sqrt{{k^2}+1}}}$,
∴$2\sqrt{{d^2}-4}=2⇒{k^2}=4⇒k=±2$.
故选D.
点评 本题的考点是直线与圆的位置关系,主要涉及了构造四边形及其面积的求法,解题的关键是“若四边形面积最小,则圆心与点P的距离最小时,即距离为圆心到直线的距离时,切线长PA,PB最小”属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | -2 | C. | 1 | D. | -4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{-\frac{1}{2},+∞})$ | B. | $[{-\frac{3}{2},+∞})$ | C. | [-1,+∞) | D. | [-2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 经过三个点有且只有一个平面 | |
| B. | 经过一个点和一条直线有且只有一个平面 | |
| C. | 经过一条直线和直线外一点的平面有且只有一个 | |
| D. | 经过一个点且与一条直线平行的平面有且只有一个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({1,\sqrt{2}}]$ | B. | $({0,\sqrt{2}}]$ | C. | $({1,\sqrt{2}})$ | D. | $({0,\sqrt{2}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(\frac{2}{3},3)$ | B. | (3,+∞) | C. | $(\frac{3}{2},3)$ | D. | $({\frac{3}{2},3}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{MA}$ | B. | $\overrightarrow{MB}$ | C. | $\overrightarrow{MC}$ | D. | $\overrightarrow{MD}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 12 | C. | 24 | D. | 36 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com