精英家教网 > 高中数学 > 题目详情
7.已知某校在暑假组织社会实践活动,将8名高三年级学生平均分配到甲、乙两家公司,其中两名英语成绩优秀的学生不能分配给同一家公司,另三名电脑特长的学生不能都分给同一个公司,则不同的分配方案有(  )
A.38B.36C.108D.114

分析 分类讨论:①甲部门要2个电脑特长学生和一个英语成绩优秀学生;②甲部门要1个电脑特长学生和1个英语成绩优秀学生.分别求得这2个方案的方法数,再利用分类计数原理,可得结论.

解答 解:由题意可得,有2种分配方案:
①甲部门要2个电脑特长学生,则有3种情况;英语成绩优秀学生的分配有2种可能;再从剩下的3个人中选一人,有3种方法.
根据分步计数原理,共有3×2×3=18种分配方案.
②甲部门要1个电脑特长学生,则方法有3种;英语成绩优秀学生的分配方法有2种;再从剩下的3个人种选2个人,方法有33种,共3×2×3=18种分配方案.
由分类计数原理,可得不同的分配方案共有18+18=36种,
故选:B.

点评 本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.“a>b”是“3a>3b”的.充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知$C_6^x=C_6^2$,则x=4或2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.甲、乙两人轮流投篮,每人每次投一球,约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为$\frac{1}{3}$,乙每次投篮投中的概率为$\frac{1}{2}$,且各次投篮互不影响.
(1)求甲获胜的概率;
(2)求投篮结束时甲的投篮次数ξ的分布列
(3)ξ的期望和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.角A是△ABC的一个内角,且$sin({A+\frac{π}{4}})=\frac{3}{5}$,则$tan({A+\frac{π}{4}})$=$-\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.5张奖券中只有1张能中奖,现分别由5名同学无放回地抽取,若已知第一名同学没有抽到中奖券,则最后一名同学抽到中奖奖券的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横,纵坐标分别对应数列{an}(n∈N*)的前12项(即横坐标为奇数项,纵坐标为偶数项),按如此规律下去,则a2013+a2014+a2015等于(  )
A.1005B.1006C.1007D.2015

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.从1到9的正整数中任意抽取两个数相加,所得的和为奇数的不同情形种数是20.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)=$\frac{x}{e^x}$,定义f1(x)=f'(x),f2(x)=f1′(x),f3(x)=f2′(x),…fn+1(x)=fn′(x),经计算f1(x)=$\frac{1-x}{e^x},{f_2}(x)=\frac{x-2}{e^x},{f_3}(x)=\frac{3-x}{e^x}$,…,则fn(x)=$\frac{(-1)^{n}(x-n)}{{e}^{x}}$.

查看答案和解析>>

同步练习册答案