精英家教网 > 高中数学 > 题目详情
14.某程序框如图所示,若输出的S=57,则判断框内应为(  )
A.k>6?B.k>5?C.k>4?D.k>3?

分析 模拟执行程序,依次写出每次循环得到的k,S的值,当k=5,S=57时,由题意应该满足条件,退出循环,输出S的值为57,结合选项即可得解.

解答 解:模拟执行程序,可得
S=1,k=1
k=2,S=4
不满足条件,k=3,S=11
不满足条件,k=4,S=26
不满足条件,k=5,S=57
此时,应该满足条件,退出循环,输出S的值为57.
故对比各个选项,判断框内应为:k>4.
故选:C.

点评 本题主要考查了程序框图和算法,依次写出每次循环得到的k,S的值是解题的关键,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.定义在[1,+∞)上的函数f(x)满足:(1)f(2x)=2f(x);(2)当2≤x≤4时,f(x)=1-|x-3|,则集合S={x|f(x)=f(34)}中的最小元素是6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设集合U={1,2,3,4,5,6},A={x∈N|1≤x≤3},则∁UA=(  )
A.UB.{1,2,3}C.{4,5,6}D.{1,3,4,5,6}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知x,y满足约束条件$\left\{\begin{array}{l}x≥1\\ x+y≤3\\ x-2y≤3\end{array}$,若z=2x+y的最大值和最小值分别为a,b,则a+b=(  )
A.7B.6C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,平面PBA⊥平面ABCD,∠DAB=90°,PB=AB,BF⊥PA,点E在线段AD上移动.
(Ⅰ)当点E为AD的中点时,求证:EF∥平面PBD;
(Ⅱ)求证:无论点E在线段AD的何处,总有PE⊥BF.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}的前n项和为Sn,a1=-1,Sn=2an+n(n∈N*),则an=1-2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.△ABC中,$\sqrt{5}$sin2A-(2$\sqrt{5}$+1)sinA+2=0,A是锐角.
(1)求tan2A的值;
(2)若cosB=$\frac{3\sqrt{10}}{10}$,c=10,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在三棱锥P-ABC中,AC=BC=AP=BP=$\sqrt{2}$,PC=$\sqrt{3}$,AB=2.求证:PC⊥AB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知四面体ABCD中,每个面都有两条边长为3,有一边为2,则四面体ABCD外接球的表面积为11π.

查看答案和解析>>

同步练习册答案