分析 当n≥2时,Sn-1+Sn=3n2+2,Sn+Sn+1=3(n+1)2+2,可得an+1+an=6n+3.利用等差数列的前n项和公式即可得出.
解答 解:当n≥2时,Sn-1+Sn=3n2+2,Sn+Sn+1=3(n+1)2+2,可得an+1+an=6n+3,
∴S101=a1+(a2+a3)+(a4+a5)+…+(a100+a101)
=1+(6×2+3)+(6×4+3)+…+(6×100+3)
=1+$\frac{50(15+603)}{2}$
=15451.
故答案为:15451.
点评 本题考查了递推式的应用、等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0)∪(1,+∞) | B. | (1,+∞) | C. | (0,1) | D. | (-∞,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{4}{3}$ | B. | -$\frac{3}{4}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $x=arcsin({-\frac{1}{4}})$ | B. | $x=-arcsin\frac{1}{4}$ | C. | $x=π+arcsin\frac{1}{4}$ | D. | $x=π-arcsin\frac{1}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com