分析 (1)求出F(x)的导数,通过讨论x的范围,得到函数的单调区间;(2)问题转化为$k=\frac{{-{x_0}^2+{x_0}+a}}{x_0^2}≤1$在x0∈(0,1]上恒成立,根据函数恒成立求出即可;
(3)问题转化为方程$m=\frac{{{x^2}+3}}{2}-lnx-2x-\frac{2}{x}(x∈(0,+∞))$恰有三个不同的实数根,令G(x)=$\frac{{{x^2}+3}}{2}-lnx-2x-\frac{2}{x}(x∈(0,+∞))$,通过求导得到G(x)的极大值和极小值,从而判断结论.
解答 解:(1)∵a=2,∴$F(x)=f(x)+g(x)=lnx-x-\frac{2}{x}$,
则$F'(x)=\frac{1}{x}-1+\frac{2}{x^2}=\frac{{-{x^2}+x+2}}{x^2}(x>0)$,…(2分)
当-x2+x+2>0时,解得0<x<2时,F′(x)>0,
即函数y=F(x)在(0,2)上单调递增,…(4分)
当-x2+x+2<0时,解得x>2时,F′(x)<0,
即函数y=F(x)在(2,+∞)上单调递减,
则函数y=F(x)的单调递增区间为(0,2),单调递减区间为(2,+∞),…(6分)
(2)∵$F(x)=f(x)+g(x)=lnx-x-\frac{a}{x}$,
∴$F'(x)=\frac{1}{x}-1+\frac{a}{x^2}=\frac{{-{x^2}+x+a}}{x^2}(0<x≤1,a≠0)$,…(7分)
以函数y=F(x)(x∈(0,1])图象上任意一点P(x0,y0)为切点的切线的斜率为k
则$k=\frac{{-{x_0}^2+{x_0}+a}}{x_0^2}≤1$在x0∈(0,1]上恒成立,
即$a≤2x_0^2-{x_0}$在x0∈(0,1]上恒成立,…(8分)
令$h({x_0})=2x_0^2-{x_0}=2{({x_0}-\frac{1}{4})^2}-\frac{1}{8}({x_0}∈({0,1}])$
当${x_0}=\frac{1}{4}$时,$h{({x_0})_{min}}=h(\frac{1}{4})=-\frac{1}{8}$,
所以$a≤h{({x_0})_{min}}=-\frac{1}{8}$,即所求实数a的最大值为$-\frac{1}{8}$…(10分)
(3)∵函数$y=g(\frac{2a}{{{x^2}+1}})+\frac{2a}{{{x^2}+1}}+m-1$的图象与函数$y=-f(x)-2x-\frac{2}{x}$的图象恰有三个不同交点,
∴方程$m-\frac{{{x^2}+3}}{2}=-lnx-2x-\frac{2}{x}(x∈(0,+∞))$恰有三个不同的实数根,
即方程$m=\frac{{{x^2}+3}}{2}-lnx-2x-\frac{2}{x}(x∈(0,+∞))$恰有三个不同的实数根,…(12分)
令G(x)=$\frac{{{x^2}+3}}{2}-lnx-2x-\frac{2}{x}(x∈(0,+∞))$,
则$G'(x)=x-\frac{1}{x}-2+\frac{2}{x^2}=\frac{{{x^3}-x-2{x^2}+2}}{x^2}=\frac{(x-2)(x-1)(x+1)}{x^2}$,
由G′(x)>0解得:x>2或0<x<1,由G'(x)<0解得:1<x<2,
所以函数y=G(x)在(0,1)和(2,+∞)上单调递增,在(1,2)上单调递减,…(14分)
即当x=1时,函数G(x)的极大值为G(1)=-2,
即当x=2时,函数G(x)的极小值为$G(2)=-\frac{3}{2}-ln2$,
则由函数y=G(x)图象的草图可知,当$-\frac{3}{2}-ln2<m<-2$时,
方程$m=\frac{{{x^2}+3}}{2}-lnx-2x-\frac{2}{x}(x∈(0,+∞))$恰有三个不同的实数根,
即函数$y=g(\frac{2a}{{{x^2}+1}})+\frac{2a}{{{x^2}+1}}+m-1$的图象与函数$y=-f(x)-2x-\frac{2}{x}$的图象恰有三个不同交点. …(16分)
点评 本题考查了函数的单调性、最值问题,考查导数的应用,函数恒成立问题,是一道综合题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | $3\sqrt{2}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | a<b<c | C. | b<a<c | D. | b>a>c |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | -$\sqrt{3}$ | C. | 1 | D. | -1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com