某射手射击所得环数X的分布列为:
| X | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| P | 0.02 | 0.04 | 0.06 | 0.09 | 0.28 | 0.29 | 0.22 |
则此射手“射击一次命中环数大于7”的概率为( )
A.0.28 B.0.88
C.0.79 D.0.51
科目:高中数学 来源: 题型:
如图16,四棱锥P ABCD中,ABCD为矩形,平面PAD⊥平面ABCD.
![]()
图16
(1)求证:AB⊥PD.
(2)若∠BPC=90°,PB=
,PC=2,问AB为何值时,四棱锥P ABCD的体积最大?并求此时平面BPC与平面DPC夹角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
在三棱柱ABCA1B1C1中,侧面ABB1A1为矩形,AB=1,AA1=
,D为AA1的中点,BD与AB1交于点O,CO⊥侧面ABB1A1.
(1)证明:BC⊥AB1;
(2)若OC=OA,求直线C1D与平面ABC所成角的正弦值.
![]()
图J122
查看答案和解析>>
科目:高中数学 来源: 题型:
现有编号分别为1,2,3,4,5的五道不同的政治题和编号分别为6,7,8,9的四道不同的历史题.甲同学从这九道题中一次性随机抽取两道题,每道题被抽到的概率是相等的,用符号(x,y)表示事件“抽到的两道题的编号分别为x、y,且x<y”.
(1)问有多少个基本事件,并列举出来;
(2)求甲同学所抽取的两道题的编号之和小于17但不小于11的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
一个均匀的正四面体的四个面上分别标有1,2,3,4四个数字,现随机投掷两次,正四面体面朝下的数字分别为x1,x2,记ξ=(x1-3)2+(x2-3)2.
(1)分别求出ξ取得最大值和最小值时的概率.
(2)求ξ的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
如图所示的几何体中,四边形ABCD为矩形,AD⊥平面,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.
(1)求证:AE∥平面BFD;
(2)求三棱锥C﹣BGF的体积.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数f(x)=x2+2ax+3,x∈[-4,6].
(1)当a=-2时,求f(x)的最值;
(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com