精英家教网 > 高中数学 > 题目详情
20.点(0,0)在直线l上的射影为(2,3),则直线l的方程为2x+3y-13=0.

分析 利用相互垂直的直线斜率之间的关系即可得出.

解答 解:O(0,0),P(2,3),
∴kOP=$\frac{3}{2}$,
∴与OP垂直的直线l的斜率k=-$\frac{2}{3}$.
∴直线l的方程为:y-3=$-\frac{2}{3}$(x-2),
化为:2x+3y-13=0.
故答案为:2x+3y-13=0.

点评 本题考查了两条直线相互垂直的直线的斜率之间的关系,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知P是直线3x+4y+3=0上的动点,PA、PB是圆C:x2+y2-2x-2y+1=0的切线,A、B是切点,C是圆心,那么四边形PACB的面积取最小值时,∠ACB的值是120°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数y=sin(ωx+φ)(ω>0,0<φ<π)满足f(-x)=f(x),其图象与直线y=1的某两个交点横坐标分别为x1,x2,且|x1-x2|的最小值为π,则(  )
A.$ω=\frac{1}{2}$,φ=$\frac{π}{4}$B.ω=2,φ=$\frac{π}{4}$C.$ω=\frac{1}{2}$,φ=$\frac{π}{2}$D.ω=2,φ=$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在条件$\left\{\begin{array}{l}{x>0}\\{y≤1}\\{2x-2y+1≤0}\end{array}\right.$下,目标函数z=2x+y则函数z的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow m=(asinx+cosx,1),\overrightarrow n=(cosx,-\frac{1}{2})$,函数f(x)=$\overrightarrow m•\overrightarrow n$的图象的一条对称轴为直线x=$\frac{π}{6}$.
(1)求a的值;
(2)求函数f(x)的单调增区间;
(3)作出函数f(x)在x∈[0,π]上的图象简图(列表,画图).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=|x-1|与y=lgx图象交点个数为(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在平面直角坐标系xOy中,使角的顶点与原点重合,角的始边与x轴的非负半轴重合.已知点P(x,y)
是角θ终边上一点,|OP|=r(r>0),定义f(θ)=$\frac{x-y}{r}$.对于下列说法:
①函数f(θ)的值域是$[-\sqrt{2},\sqrt{2}]$;
②函数f(θ)的图象关于原点对称;
③函数f(θ)的图象关于直线θ=$\frac{3π}{4}$对称;
④函数f(θ)是周期函数,其最小正周期为2π;
⑤函数f(θ)的单调递减区间是[2kπ-$\frac{3π}{4}$,2kπ+$\frac{π}{4}$],k∈Z.
其中正确的是①③④.(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知幂函数y=f(x)的图象过点($\frac{1}{2}$,$\sqrt{2}$),则log2f(2)的值为(  )
A.$\frac{1}{2}$B.2C.-$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.化简:$\frac{{cos(π+x)•sin(3π-x)•cos(-\frac{π}{2}-x)}}{{tan(π+x)•cos(\frac{3π}{2}-x)•sin(x-\frac{π}{2})}}$.

查看答案和解析>>

同步练习册答案