精英家教网 > 高中数学 > 题目详情
4.函数y=x4+$\frac{1}{x^4}$的图象关于 (  )对称.
A.原点B.y轴C.x轴D.直线y=x

分析 根据函数奇偶性的定义进行判断即可.

解答 解:函数的定义域为(-∞,0)∪(0,+∞),
则f(-x)=(-x)4+$\frac{1}{(-x)^{4}}$=x4+$\frac{1}{x^4}$=f(x),
则函数f(x)为偶函数,
则图象关于y轴对称,
故选:B.

点评 本题主要考查函数图象的性质,利用函数奇偶性的对称性是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设全集U=R,集合A={x|0<x<4},B={x|x<1或x>3}.
求A∩B,A∪B,A∩(∁UB).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列结论正确的是(  )
A.各个面都是三角形的几何体是三棱锥
B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥
C.圆锥的顶点与底面圆周上的任意一点的连线都是母线
D.棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是六棱锥

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.计算:Sn=$\frac{1}{2×5}$+$\frac{1}{5×8}$+…+$\frac{1}{(3n-1)(3n+2)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.我们知道,对任意实数x,2x都是一个确定的实数,类似的,在下列说法中,错误的是(  )
A.对任意无理数x,5x都是一个确定的实数
B.对于负数x,πx没有意义
C.设a>0,且a≠1,则ax中的x可以取到任意实数
D.若a<0,则当x=$\frac{1}{2n}$,n∈N*时,ax没有意义

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设关于x的不等式(k2-2k-3)x2+(k+1)x+1>0(k∈R)的解集为M.
(1)若1∈M,求实数k的取值范围.
(2)若M=R,求实数k的取值范围.
(3)是否存在实数k,满足:“对任意n∈N,都有n∈M,对任意m∈Z-,都有m∉M”?若存在,试求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.使直线a,b为异面直线的充分不必要条件是(  )
A.a?平面α,b?平面α,a与b不平行
B.a?平面α,b?平面α,a与b不相交
C.a∥直线c,b∩c=A,b与a不相交
D.a?平面α,b?平面β,α∩β=l,a与b无公共点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求函数f(x)=$\sqrt{x}$+x在[2,+∞]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,四边形ABCD为正方形,SA垂直于四边形ABCD所在的平面,过点A分别作AE⊥SB,AF⊥SD,垂足分别为点E和点F,求证:EF⊥SC.

查看答案和解析>>

同步练习册答案