精英家教网 > 高中数学 > 题目详情
14.求下列函数的最大值、最小值,并求使函数取得这些值的x的集合:
(1)y=-3-sinx;
(2)y=cosx-4.

分析 利用正余弦函数的图象与性质得出最值及x对应的值.

解答 解:(1)当sinx=-1时,y=-3-sinx取得最大值为-2,
此时x的集合为{x|x=-$\frac{π}{2}$+2kπ,k∈Z}.
当sinx=1时,y=-3-sinx取得最小值为-4.
此时x的集合为{x|x=$\frac{π}{2}$+2kπ,k∈Z}.
(2)当cosx=-1时,y=cosx-4取得最小值-5,
此时x的集合为{x|x=π+2kπ,k∈Z},
当cosx=1时,y=cosx-4取得最大值-3.
此时x的集合为{x|x=2kπ,k∈Z}.

点评 本题考查了正余弦函数的图象与性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若$tanθ=\frac{1}{3}$,则$tan(θ+\frac{π}{4})$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某艺校在一天的7节课中随机安排语文、数学、外语三门文化课和四门艺术课各一节,且课表的任两节文化课都不能相邻,则不同的安排方法有(  )
A.60种B.144种C.1440种D.5040种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,四边形ABCD中,AB=3,BC=2$\sqrt{2}$,AC=$\sqrt{5}$,∠ADC=3∠ABC.
(Ⅰ)求∠ADC的大小;
(Ⅱ)若BD•cos∠ABD=AB,求BD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.450°<α<540°,$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos2α}}$=-sin$\frac{α}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.数列{an}的通项公式为an=30+7n-n2,n∈N*
(I)若an>0,求n的取值;
(Ⅱ)数列{an}中,是否存在最大项?若存在,求出最大项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.(1)函数f(x)=sinx•cos$\frac{x}{2}$,g(x)=cosx•sin$\frac{x}{2}$,那么[$\frac{π}{2}$,$\frac{3}{4}π$]是函数f(x)-g(x)的一个单调减区间;
(2)对于f(x)=sinx,若α为第一象限角,则f(α)+f($\frac{π}{2}$-α)>1;
(3)曲线y=cos(2x-$\frac{π}{6}$)的一条对称轴方程是x=-$\frac{2}{3}$π;
(4)函数y=sin4x+cos2x的最小正周期是π;
(5)函数y=tan($\frac{x}{2}$-$\frac{π}{3}$)图象的一个对称中心是($\frac{5}{3}$π,0).
其中正确命题的序号是(2)(4)(5).(将你认为正确的都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知$\overrightarrow a=(1,-2)$,$\overrightarrow b=(2,m)$,若$\overrightarrow a⊥\overrightarrow b$,则$|\overrightarrow b|$=(  )
A.$\frac{1}{2}$B.1C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列四个结论:
①若“p∧q是真命题”,则“¬p可能是真命题”;
②命题“?x0∈R,x${\;}_{0}^{2}$-x-1<0”的否定是“?x∈R,x2-x-1≥0”;
③“φ=$\frac{π}{2}$”是“y=sin(2x+φ)为偶函数”的充要条件;
④当a<0时,幂函数y=xa在区间(0,+∞)上单调递减.
其中正确结论的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案