精英家教网 > 高中数学 > 题目详情
如图,设向量
OA
=(3,1),
OB
=(1,3),若
OC
OA
OB
,且μ≥λ≥1,则用阴影表示C点的位置区域正确的是(  )
A、
B、
C、
D、
考点:平面向量的基本定理及其意义
专题:平面向量及应用
分析:利用向量的坐标运算可得λ,μ用x,y表示.再根据λ≥μ≥1,即可得出x,y满足的约束条件,进而得出可行域.
解答: 解:设C(x,y).
∵向量
OA
=(3,1),
OB
=(1,3),
OC
OA
OB
=λ(3,1)+μ(1,3)=(3λ+μ,λ+3μ),
x=3λ+μ
y=λ+3μ

解得
λ=
3x-y
8
μ=
3y-x
8

∵μ≥λ≥1,
x≤y
3x-y-8≥0

故选:C.
点评:本题考查了向量的线性运算和约束条件及其可行域,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
AB
=
a
+5
b
BC
=-2
a
+8
b
CD
=4
a
+2
b
,则(  )
A、A、B、C三点共线
B、B、C、D三点共线
C、A、B、D三点共线
D、A、C、D三点共线

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线x+2y+m=0按向量
a
=(-1,-2)平移后与圆C:x2+y2+2x-4y=0相切,则实数m的值等于(  )
A、3或13B、3或-13
C、-3或7D、-3或-13

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={0,1,3},B={1,2},则A∪B等于(  )
A、{1}
B、{0,2,3}
C、{0,1,2,3}
D、{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
x+ax+3,(-1≤x<0)
bx-1,(0≤x≤1)
(a>0,且a≠1),若f(-1)=f(1),则logab=(  )
A、-1B、0C、1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知离心率e=
3
2
的椭圆C:
y2
a2
+
x2
b2
=1(a>b>0)过点P(
3
2
,1),O为坐标原点.
(1)求椭圆C的方程;
(2)设直线l与椭圆C交于两点A(x1,y1),B(x2,y2),若向量
m
=(ax1,by1)与
n
=(ax2,by2)垂直.试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式ax2-3x+2<0的解集为A={x|1<x<b}.
(1)求a,b的值.
(2)求函数f(x)=(2a+b)x+
25
(b-a)x+a
,(x∈A)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=mx2-(4+m2)x,其中m∈R且m>0,区间D={x|f(x)<0},给定常数t∈(0,2),当2-t≤m≤2+t时,求区间D的长度的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
1
2
ax2-bx,设h(x)=f(x)-g(x)
(1)若g(2)=2,讨论函数h(x)的单调性;
(2)若函数g(x)是关于x的一次函数,且函数h(x)有两个不同的零点x1,x2
①求b的取值范围;
②求证:x1x2>e2

查看答案和解析>>

同步练习册答案