精英家教网 > 高中数学 > 题目详情
已知离心率e=
3
2
的椭圆C:
y2
a2
+
x2
b2
=1(a>b>0)过点P(
3
2
,1),O为坐标原点.
(1)求椭圆C的方程;
(2)设直线l与椭圆C交于两点A(x1,y1),B(x2,y2),若向量
m
=(ax1,by1)与
n
=(ax2,by2)垂直.试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(Ⅰ)利用椭圆的离心率e=
3
2
,椭圆经过点P(
3
2
,1),建立方程组,求得几何量,从而可得椭圆的方程.
(Ⅱ)分类讨论:①当直线AB斜率不存在时,即x1=x2,y1=-y2,利用
m
n
=0,A在椭圆上,可求△AOB的面积;②当直线AB斜率存在时,设AB的方程为y=kx+t,代入椭圆方程,利用韦达定理,结合
m
n
=0可得△AOB的面积是定值.
解答: 解:(1)∵离心率e=
3
2
的椭圆C:
y2
a2
+
x2
b2
=1(a>b>0)过点P(
3
2
,1),
e=
c
a
=
a2-b2
a
=
3
2
1
a2
+
3
4b2
=1

解得a=2,c=1,
∴椭圆E的方程为
y2
4
+x2=1

(Ⅱ)(Ⅲ)①当直线AB斜率不存在时,即x1=x2,y1=-y2
m
n
=0
=0,∴4x12-y12=0
∵A在椭圆上,∴
4x12
4
+x12=1
,∴|x1|=
2
2
,|y1|=
2

∴S=
1
2
|x1||y1-y2|=1

②当直线AB斜率存在时,设AB的方程为y=kx+t,
代入椭圆方程,得(k2+4)x2+2ktx+t2-4=0
△=4k2t2-4(k2+4)(t2-4)>0,x1+x2=
-2kt
k2+4
,x1x2=
t2-4
k2+4

m
n
=0,∴4x1x2+y1y2=0,∴4x1x2+(kx1+t)(kx2+t)=0
∴2t2-k2=4
S=
1
2
×
|t|
1+k2
|AB|=
|t|
4k2-4t2+16
k2+4
=
4t2
2|t|
=1.
综上,△AOB的面积是定值1.
点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查三角形面积的计算,解题的关键是联立方程,利用韦达定理进行求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

由数字1,2,3,4,5,6可以组成没有重复数字的两位数的个数是(  )
A、11B、12C、30D、36

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,已知b2+c2-a2=
3
bc,acosB+bcosA=csinC,
则角B的大小为 (  )
A、
π
6
B、
π
3
C、
π
2
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
为两个单位向量,下列四个命题中正确的是(  )?
A、
a
b
相等
B、
a
b
=1
C、
a
2=
b
2
D、如果
a
b
平行,那么
a
b
相等

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设向量
OA
=(3,1),
OB
=(1,3),若
OC
OA
OB
,且μ≥λ≥1,则用阴影表示C点的位置区域正确的是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥A-BCDE的底面BCDE是正方形,AB垂直于面BCDE,且AB=CD,F,G分别是BC、AD的中点
(1)证明:FG⊥平面ADE
(2)求三棱锥A-FDE与四棱锥G-BFDE的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1(-1,0)、F2(1,0),且经过定点P(1,
3
2
),M(x0,y0)为椭圆C上的动点,以点M为圆心,MF2为半径作圆M.
(1)求椭圆C的方程;
(2)若圆M与y轴有两个不同交点,求点M横坐标x0的取值范围;
(3)是否存在定圆N,使得圆N与圆M恒相切?若存在,求出定圆N的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点与一个顶点组成一个直角三角形的三个顶点,且椭圆E过点M(2,
2
),O为坐标原点.
(1)求椭圆E的方程;
(2)是否存在以原点为圆心的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且
OA
OB
?若存在,写出该圆的方程,并求该切线在y轴上截距的取值范围及|AB|的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知∠A,∠B,∠C的对边分别为a,b,c,且a=2,∠B-∠C=
π
2
,△ABC面积为
3
.   
(1)求证:sinA=cos2C;
(2)求边b的长.

查看答案和解析>>

同步练习册答案