精英家教网 > 高中数学 > 题目详情
在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+S2=12,q=
S2
b2

(Ⅰ)求an与bn
(Ⅱ)设数列{cn}满足cn=
1
Sn
,求{cn}的前n项和Tn
考点:等差数列与等比数列的综合
专题:综合题,等差数列与等比数列
分析:(Ⅰ)利用待定系数法,建立方程组,求出d,q,即可求an与bn
(Ⅱ)确定数列{cn}的通项,利用裂项法,可求{cn}的前n项和Tn
解答: 解:(Ⅰ)设{an}的公差为d,
因为
b2+S2=12
q=
S2
b2
所以
q+6+d=12
q=
6+d
q
…(2分)
解得 q=3或q=-4(舍),d=3.                          …(4分)
故an=3+3(n-1)=3n,bn=3n-1.                         …(6分)
(Ⅱ)∵Sn=
n(3+3n)
2

∴cn=
1
Sn
=
2
n(3+3n)
=
2
3
1
n
-
1
n+1
),
∴Tn=
2
3
[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]=
2
3
(1-
1
n+1
)=
2n
3(n+1)
点评:本题考查等差数列与等比数列的综合,考查数列的通项与求和,考查裂项法的运用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A、B、C是直线l上不同的三个点,点O不在直线l上,则使等式x2
OA
+x
OB
+
BC
=
0
成立的实数x的取值集合为(  )
A、{-1}B、∅
C、{0}D、{0,-1}

查看答案和解析>>

科目:高中数学 来源: 题型:

“sinA=
2
2
”是“A=45°”的(  )
A、充分而不必要条件
B、必要而不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

以平面直角坐标系的原点为极点,以x轴的正半轴为极轴建立极坐标系.设曲线C的参数方程为
x=2cosα
y=
3
sinα
(α是参数),直线l的极坐标方程为ρcos(θ+
π
6
)=2
3

(1)求直线l的直角坐标方程和曲线C的普通方程;
(2)设点P为曲线C上任意一点,求点P到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和记为Sn,a1=1,点(Sn,an+1)在直线y=2x+1上,n∈N*.
(1)求证:数列{an}是等比数列,并求数列{an}的通项公式an
(2)设bn=log3an+1,Tn是数列{
1
bnbn+1
}的前n项和,求T2014的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩阵M=
10
0
1
2

(Ⅰ)求M2,M3,并猜想Mn的表达式;
(Ⅱ)试求曲线x2+y2=1在矩阵M-1变换下所得曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A1(-2,0),A2(2,0),过点A1的直线l1与过点A2的直线l2相交于点M,设直线l1斜率为k1,直线l2斜率为k2,且k1k2=-
3
4

(1)求直线l1与l2的交点M的轨迹方程;
(2)已知F2(1,0),设直线l:y=kx+m与(1)中的轨迹M交于P、Q两点,直线F2P、F2Q的倾斜角分别为α、β,且α+β=π,求证:直线l过定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
3
2
,a+b=3.
(1)求椭圆C的方程.
(2)设A、B是椭圆C的上、下顶点,P是椭圆上异于A、B的任意一点,记直线PA的斜率为k,PB的斜率为m,求证:mk是定值.
(3)在(2)的条件下,直线PA、直线PB分别交直线y=-2于点N、M,P到Y=-2的距离为d,求
|MN|
d
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足前n项和Sn=2n+1-2.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=(2n+1)•an,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案