精英家教网 > 高中数学 > 题目详情
8.数列{an}满足:an+1=3an+2,且a1=1,则其通项公式an=(  )
A.3n-1B.2×3n-1C.2×3n-1-1D.3n-1-1

分析 an+1=3an+2,变形an+1+1=3(an+1),利用等比数列的通项公式即可得出.

解答 解:∵an+1=3an+2,∴an+1+1=3(an+1),
∴a1+1=2,
∴数列{an+1}是等比数列,首项为2,公比为3.
∴an+1=2×3n-1
∴an=2×3n-1-1,
故选:C.

点评 本题考查了递推关系、等比数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知函数f(n)=n2sin$\frac{nπ}{2}({n∈{N^*}}$),且an=f(n)+f(n+1),则a1+a2+a3+…+a2016的值为4023.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列函数中,定义域是R且为增函数的是(  )
A.y=(x-1)2B.y=x3C.y=$\frac{1}{x}$D.y=|x|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{{{x^2}+ax+b}}{x}$(x≠0)是奇函数,且满足f(1)=f(4).
(1)求实数a,b的值;
(2)若x∈[2,+∞),函数f(x)的图象上是否存在不同的两点,使过这两点的直线平行于轴,请说明理由!
(3)是否存在实数同时满足以下两个条件:①不等式f(x)+$\frac{k}{2}$>0对x∈(0,+∞)恒成立,②方程f(x)=k在x∈[-8,-1]上有解.若存在,求出实数的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知三角形ABC中,$\overrightarrow{AB}$=(x1,y1),$\overrightarrow{AC}$=(x2,y2).求三角形ABC的面积S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}满足a1=4,an+2an+1=6,则a4=$\frac{7}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在纸箱内装有10个大小相同的黑球、白球和红球,已知从箱中任意摸出1个球,得到黑球的概率是$\frac{2}{5}$,从箱中摸出2个球,至少得到1个白球的概率是$\frac{8}{15}$.
(1)求箱中各色球的个数;
(2)从箱中任意摸出3个球,记白球的个数为ξ,求随机变量ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数f(x)是定义在R上的偶函数,f′(x)为其导函数,当x>0时,f(x)+x•f′(x)>0,且f(1)=0,则不等式x•f(x)>0的解集为(-1,0)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列函数中,在区间(0,+∞)上为增函数的是(  )
A.f(x)=x2+3xB.y=(x-1)2C.g(x)=2-xD.y=log0.5(x+1)

查看答案和解析>>

同步练习册答案