精英家教网 > 高中数学 > 题目详情
15.已知抛物线x2=2py(p>0)的准线与椭圆$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{4}$=1相切,则p的值为(  )
A.2B.3C.4D.5

分析 求出抛物线的准线方程,然后利用相切关系列出方程求解p即可.

解答 解:抛物线x2=2py(p>0)的准线与椭圆$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{4}$=1相切,
可得抛物线的准线方程为:y=-2,又抛物线的准线方程为y=-$\frac{p}{2}$,
所以-$\frac{p}{2}$=-2,解得p=4.
故选:C.

点评 本题考查抛物线的简单性质的应用,直线与椭圆的位置关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.从4名男生和2 名女生中任选3人参加演讲比赛,设随机变量X表示所选3人中女生的人数.
(1)求X的分布列(结果用数字表示);
(2)求所选3个中最多有1名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.化简(下列字母的取值范围均使根式有意义):
(1)a•$\sqrt{-\frac{1}{a}}$;(2)$\sqrt{-{a}^{3}{b}^{2}}$;(3)$\sqrt{\frac{{y}^{3}}{12{x}^{3}}}$(x<0);(4)$\sqrt{(a-3)^{2}}$+$\sqrt{(a+4)^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.双曲线的渐近线方程是3x±2y=0,焦点在y轴上,则该双曲线的离心率等于$\frac{\sqrt{13}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)的离心率为$\frac{\sqrt{5}}{2}$,则a的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若复数z满足z(1-i)=|1-$\sqrt{3}$i|+i,则z的实部为(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知logxa=2,logxb=3,logxc=6,求logabcx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x≥0}\\{x,x<0}\end{array}\right.$,则f(3)=9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知集合$A=\left\{{x|\frac{2x-1}{x+1}≤1,x∈R}\right\}$,集合B={x||x-a|≤1,x∈R}.
(1)求集合A;
(2)若B∩∁RA=B,求实数a的取值范围.

查看答案和解析>>

同步练习册答案