精英家教网 > 高中数学 > 题目详情
16.对于数25,规定第1次操作为23+53=133,第2次操作为13+33+33=55,如此反复操作,则第2016次操作后得到的数是250.

分析 第1次操作为23+53=133,第2次操作为13+33+33=55,第3次操作为53+53=250,第4次操作为23+53+03=133,所以操作结果,以3为周期,循环出现,由此可得第2016次操作后得到的数.

解答 解:第1次操作为23+53=133,
第2次操作为13+33+33=55,
第3次操作为53+53=250,
第4次操作为23+53+03=133,
所以操作结果,以3为周期,循环出现,
由此可得第2016次操作后得到的数与第3次操作后得到的数相同,
故第2016次操作后得到的数是250,
故答案为:250.

点评 本题考查合情推理,考查学生的阅读能力,解题的关键是得出操作结果,以3为周期,循环出现.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知f(x)=ax-lnx.
(1)讨论f(x)单调性;
(2)当a>0时,已知f(x1)=f(x2),x1≠x2,求证:x1+x2>$\frac{2}{a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设a∈Z,且0<a<13,若532016+a能被13整除,则a=(  )
A.0B.1C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.图中的三角形称为希尔宾斯基(Sierpinski)三角形.黑色的三角形个数依次构成一个数列,则这个数列的一个通项公式是(  )
A.an=3n-1B.an=3nC.an=3n-2nD.an=3n-1+2n-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,第1个图形是由正三角形“扩展”而来的,第2个图形是由正方形“扩展”而来的,第3个图形是由正五边形“扩展”而来的,…,第n个图形是由正n+2边形“扩展”而来的(n∈N*).则在第n个图形中共有(n+2)(n+3)个顶点.(用n表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=a,曲线C参数方程为$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),已知C与l有且只有一个公共点.
(Ⅰ)求a的值;
(Ⅱ)过P点作平行于l的直线交C于A,B两点,且|PA|•|PB|=3,求点P轨迹的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.不等式|$\sqrt{x-1}$-2|>1的解集是{x|1≤x<2或x>10}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.“推迟退休”问题备受关注,调查机构对某小区的位居民进行了调查,得到如表的列联表:
支持推迟退休不支持推迟退休合计
年龄不大于45岁206080
年龄大于45岁101020
合计3070100
(1)请画出列联表的等高条形图,并通过图形判断两个分类变量是否有关系.
(2)根据表中数据,判断是否有95%的把握认为“不同年龄的居民在是否支持推迟退休上观点有差异”?
(3)已知在被调查的支持推迟退休且年龄大于45 岁的居民中有5 位男性,其中2 位是一线工人,现从这5 位男性中随机抽取3 人,求至多有1 位一线工人的概率
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d
P(K2>k)0.1000.0500.0250.010
k2.7063.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=$\sqrt{-lg(1-x)}$的定义域为[0,1).

查看答案和解析>>

同步练习册答案