精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-1,则f(x+1)的递增区间是
 
考点:二次函数的性质
专题:函数的性质及应用,导数的概念及应用
分析:先将f(x)=x2-1中的x用x+1替换求f(x+1)并化简,然后求导数,令导数大于0,即可求出增区间.
解答: 解:∵f(x)=x2-1,
∴f(x+1)=(x+1)2-1=x2+2x,
∴f′(x+1)=2x+2,
令f′(x+1)>0即2x+2>0,解得x>-1,
则f(x+1)的递增区间是(-1,+∞),
故答案为:(-1,+∞)
点评:本题考查函数的解析式和单调性,利用导数求解即可,属于常用方法和思路,要熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-x-
a
x

(1)若a=0,求f(x)的极大值;
(2)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-x3+x2,x<1
einx,x≥1
,若关于x的方程f(x)=kx(x∈R)恰有两个不同的实数根,则k的取值范围为(  )
A、k≤0或
1
4
<k<1
B、k=1或k≤0
C、
1
4
<k<1
D、k≤0或
1
4
<k<e

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面上不重合的四点P,A,B,C满足
PA
+
PB
+
PC
=0
,且
AB
+
AC
=m
AP
,那么实数m的值为(  )
A、5B、4C、3D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

若在抛物线y=ax2(a>0)的上方做一个半径为r的圆与抛物线相切于原点O,且该圆与抛物线没有别的公共点,则r的最大值是?

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:cos10°cos(-20°)+sin20°sin170°.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知长方体ABCD-A1B1C1D1的侧面积和体积分别为12和24,且AB=AD,求该长方体外接球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆x2+
y2
3
=1
的上、下顶点分别为A1和A2,M(x1,y)和N(-x1,y)是椭圆上两个不同的动点.
(I)求直线A1M与A2N交点的轨迹C的方程;
(Ⅱ)若过点F(0,2)的动直线z与曲线C交于A、B两点,
AF
FB
问在y轴上是否存在定点E,使得
OF
⊥(
EA
EB
)?若存在,求出E点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l:(m+2)x+(m-1)y-2m-1=0与椭圆
x2
2
+
y2
3
=1的位置关系为(  )
A、相交B、相切
C、相离D、与m值有关

查看答案和解析>>

同步练习册答案