精英家教网 > 高中数学 > 题目详情
16.已知a,b是两条不重合的直线,α,β是两个不同的平面,则下列命题中正确的是(  )
A.若a⊥b,a⊥α,则b∥αB.若a⊥α,b∥α,则a⊥b
C.若a∥b,b?α,则a∥αD.若a,b?α,a∥β,b∥β,则α∥β

分析 利用线面平行、垂直的性质,面面平行的判定定理,即可得出结论.

解答 解:对于A,若a⊥b,a⊥α,则b∥α或b?α,不正确;
对于B,b∥α,经过b的平面与α的交线为c,则b∥c,∵a⊥α,∴a⊥c,∵b∥c,∴a⊥b,正确;
对于C,若a∥b时,a与α的关系可能是a∥α,也可能是a?α,即a∥α不一定成立,不正确;
对于D,根据面面平行的判定定理可知,对应平面内的直线如果两条直线是相交的,则两个平面是平行的,不正确.
故选:B.

点评 本题考查线面平行、垂直的性质,面面平行的判定定理,考查学生分析解决问题的能力,正确转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知直线方程y=$\sqrt{3}$x+2,则该直线的倾斜角为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某商场销售一种“艾丽莎”品牌服装,销售经理根据销售记录发现,该服装在过去的一个月内(以30天计)每件的销售价格P(x)(百元)与时间x(天)的函数关系近似满足P(x)=1+$\frac{k}{x}$(k为正的常数),日销售量Q(x)(件)与时间x(天)的部分数据如表所示:
 x(天) 10 20 25 30
 Q(x)(件) 110 120 125 120
已知第2哦天的日销售量为126百元.
(Ⅰ)求k的值;
(Ⅱ)给出以下三种函数模型:
①Q(x)=a•bx
②Q(x)=a•logbx;
③Q(x)=a|x-25|+b.
请您根据如表中的数据,从中选择你认为最合适的一种函数来描述日销售量Q(x)(件)与时间x(天)的变化关系,并求出该函数的解析式;
(Ⅲ)求该服装的日销收入f(x)(1≤x≤30,x∈N*)(百元)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=ax2-(a+2)x+2.
(1)若实数a<0,求关于x的不等式f(x)>0的解集;
(2)若“$\frac{1}{2}$≤x≤$\frac{3}{4}$”是“f(x)+2x<0”的充分条件,求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆P与直线x=-1相切,且经过(1,0),设点P的轨迹为曲线C.
(1)求曲线C的方程;
(2)点A的坐标为(2,1),点B在曲线C上运动,求线段AB中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若复数z满足(1-i2)z=1+i3,则z的虚部为(  )
A.0B.$\frac{1}{2}$C.1D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=21n(x+1)-1nax在其定义域内有且只有一个零点,则实数a的取值集合为(  )
A.|4|B.(-∞,4]C.(-∞,0)D.(-∞,0)∪{4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知点A(0,1),B(3,2),C(a,0),若A,B,C三点共线,则a=(  )
A.$\frac{1}{2}$B.-1C.-2D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.将(1-$\frac{1}{{x}^{2}}$)n(n∈N+)的展开式中x-4的系数记为an,则$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{2016}}$=$\frac{2015}{1008}$.

查看答案和解析>>

同步练习册答案