分析 根据数列递推式,变形可得数列{$\sqrt{{a}_{n}}$}是以$\sqrt{2}$为首项,以1为公差的等差数列,由此可得结论.
解答 解::an+1=an+2$\sqrt{{a}_{n}}$+1,
∴an+1=($\sqrt{{a}_{n}}$+1)2,
∵{an}为正项数列,
∴$\sqrt{{a}_{n+1}}$=$\sqrt{{a}_{n}}$+1,
∴$\sqrt{{a}_{n+1}}$-$\sqrt{{a}_{n}}$=1,
∵a1=2,
∴$\sqrt{{a}_{1}}$=$\sqrt{2}$,
∴{$\sqrt{{a}_{n}}$}是以$\sqrt{2}$为首项,以1为公差的等差数列,
∴$\sqrt{{a}_{n}}$=$\sqrt{2}$+(n-1),
∴an=(n-1)2+2+2$\sqrt{2}$(n-1).
点评 本题考查数列递推式,考查等差数列的判定,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | -$\sqrt{3}$ | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 2$\sqrt{2}$ | C. | 2 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,$\frac{4}{3}$) | B. | ($\frac{2}{3}$,1] | C. | [$\frac{2}{3}$,1] | D. | [1,$\frac{4}{3}$] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com