精英家教网 > 高中数学 > 题目详情
如图,在平面直角坐标系中,以O(0,0),A(1,1),B(3,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是(  )
A、(-3,1)
B、(4,1)
C、(-2,1)
D、(2,-1)
考点:两条直线平行的判定
专题:推理和证明
分析:分别令所求第四点和O,A,B为对角顶点,结合平行四边形的性质,求出满足条件的坐标,进而可得答案.
解答: 解:若所求第四点和O互为对角顶点,则坐标为(1+3-0,1+0-0)=(4,1),
若所求第四点和A互为对角顶点,则坐标为(0+3-1,0+0-1)=(2,-1),
若所求第四点和B互为对角顶点,则坐标为(1+0-3,1+0-0)=(-3,1),
故选:C
点评:本题考查的知识点是平行四边形的几何特征,其中根据平行四边形对角顶点的坐标和相等构造关系式,是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知偶函数f(x)在y轴右边的图象如图所示,则函数f(x)的单调减区间为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(2,4),
b
=(-1,2).若
c
=
a
-(
a
b
b
,则|
c
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos2x-
3
sinxcosx+1.
(1)求函数f(x)的单调递增区间;
(2)若f(θ+
π
12
)=
5
6
,θ∈(
π
3
3
),求sin(2θ+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={y|y=(
1
4
x-3(
1
2
x+1+1,x∈(-1,2)},B={x|x-m2|≥
1
4
},命题p:x∈A,命题q:x∈B,并且命题p是命题q的充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某集团为了获得更大的利润,每年要投入一定的资金用于广告促销.经调查,每年投入广告费t(100万元)可增加销售额约为-t2+5t(100万元)(0≤t≤3).
(1)若该集团将当年的广告费控制在300万元以内,则应投入多少广告费,才能使集团由广告费而产生的收益最大?
(2)现在该集团准备投入300万元,分别用于广告促销和技术改造.经预算,每投入技术改造费x(100万元),可增加的销售额约为-
1
3
x3+x2+3x(100万元).请设计一个资金分配方案,使该集团由这两项共同产生的收益最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0 )的短轴为直径,以顶点为圆心与直线y=x+
6
相切,且椭圆C的离心率为
1
2

(1)求椭圆C的方程;
(2)若A、B是椭圆C上的点,且AB⊥x轴,M(4,0),连接直线MB交椭圆C于另一点D(不同于B点),试分析直线AD与x轴是否相交于定点?若是,求出定点坐标,若不是,请加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=
kx2-6kx+(k+8)
的定义域为R,则k的取值范围是(  )
A、[1,+∞)
B、(1,+∞)
C、{0}∪(1,+∞)
D、[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
log2x,x>0
(
1
2
)
x
,x≤0
,若f[f(a)]=2,则实数a=
 

查看答案和解析>>

同步练习册答案