精英家教网 > 高中数学 > 题目详情
1.已知复数z1=2sinθ-$\sqrt{3}$i,z2=1+(2cosθ)i,i为虚数单位,θ∈[$\frac{π}{3}$,$\frac{π}{2}$].
(1)若z1•z2为实数,求sec2θ的值;
(2)若复数z1,z2对应的向量分别是$\overrightarrow{a}$,$\overrightarrow{b}$,存在θ使等式(λ$\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{a}$-λ$\overrightarrow{b}$)=0成立,求实数λ的取值范围.

分析 (1)利用复数的乘法化简复数,通过复数是实数求出θ,然后求解即可.
(2)化简复数z1,z2对应的向量分别是$\overrightarrow{a}$,$\overrightarrow{b}$,然后利用向量的数量积求解即可.

解答 解:复数z1=2sinθ-$\sqrt{3}$i,z2=1+(2cosθ)i,i为虚数单位,θ∈[$\frac{π}{3}$,$\frac{π}{2}$].
(1)z1•z2=2sinθ+2$\sqrt{3}$cosθ+(4sinθcosθ-$\sqrt{3}$)i,
z1•z2为实数,可得4sinθcosθ-$\sqrt{3}$=0,sin2θ=$\frac{\sqrt{3}}{2}$,
解得θ=$\frac{π}{3}$.
sec2θ=$\frac{1}{cos2θ}$=-2.
(2)复数z1=2sinθ-$\sqrt{3}$i,z2=1+(2cosθ)i,
复数z1,z2对应的向量分别是$\overrightarrow{a}$,$\overrightarrow{b}$,
$\overrightarrow{a}$=(2sinθ,-$\sqrt{3}$),$\overrightarrow{b}$=(1,2cosθ),(λ$\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{a}$-λ$\overrightarrow{b}$)=0,
∵$\overrightarrow{a}$2+$\overrightarrow{b}$2=(2sinθ)2+(-$\sqrt{3}$)2+1+(2cosθ)2=8,
$\overrightarrow{a}$•$\overrightarrow{b}$=(2sinθ,-$\sqrt{3}$)•(1,2cosθ)=2sinθ-2$\sqrt{3}$cosθ,
∴(λ$\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{a}$-λ$\overrightarrow{b}$)=λ($\overrightarrow{a}$2+$\overrightarrow{b}$2)-(1+λ2)$\overrightarrow{a}$•$\overrightarrow{b}$
=8λ-(1+λ2)(2sinθ-2$\sqrt{3}$cosθ)=0,
化为sin(θ-$\frac{π}{3}$)=$\frac{2λ}{1+{λ}^{2}}$,
∵θ∈[$\frac{π}{3}$,$\frac{π}{2}$],∴(θ-$\frac{π}{3}$)∈[0,$\frac{π}{6}$],∴sin(θ-$\frac{π}{3}$)∈[0,$\frac{1}{2}$].
∴0≤$\frac{2λ}{1+{λ}^{2}}$≤$\frac{1}{2}$,解得λ≥$2+\sqrt{3}$或λ≤2-$\sqrt{3}$.
实数λ的取值范围是(-∞,2-$\sqrt{3}$]∪[2+$\sqrt{3}$,+∞).

点评 熟练掌握z1•z2∈R?虚部=0、复数的几何意义、向量的数量积、一元二次不等式的解法是解题的关键

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,点P为椭圆在y轴上的一个顶点,若2b,|$\overrightarrow{{F}_{1}{F}_{2}}$|,2a成等差数列,且△PF1F2的面积为12,则椭圆C的方程为$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设{an}是等差数列,下列结论中正确的是(  )
A.若a1+a2<0,则a2+a3<0
B.若{an}是正数数列,a2+an-1=12,Sn=36.则a3a4的最小值为36
C.若a1<0,则(a2-a1)(a2-a3)>0
D.若0<a1<a2,则a2$>\sqrt{{a}_{1}{a}_{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}满足an=4an-1-1(n≥2,n∈N*),且a1=1.
(1)求数列{an}的通项公式.
(2)已知bn=an-2,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.定义在R上的奇函数f(x)在区间(-∞,0)上单调递减,且f(2)=0,则不等式xf(x-1)≥0的解集为[-1,0]∪[1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆x2+y2+Dx+Ey-6=0的圆心为点C(3,4),求圆的半径r.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知tanα=3,求下列各式的值.
①$\frac{sinα+5cosα}{2sinα+3cosα}$;
②sin2α+sinαcosα+2cos2α.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=3sin($\frac{1}{2}$x+$\frac{π}{4}$)-1,x∈R,求:
(1)函数f(x)的最小值及此时自变量x的取值集合;
(2)函数y=sinx的图象经过怎样的变换得到函数f(x)=3sin($\frac{1}{2}$x+$\frac{π}{4}$)-1的图象?
(3)若x在[0,$\frac{π}{3}$],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求函数y=4cosx+3sinx的最大值和最小值,并指出取得最值时x的值.

查看答案和解析>>

同步练习册答案