精英家教网 > 高中数学 > 题目详情
4.已知函数$f(x)=lg\frac{ax-1}{x-1}({a>0})$.
(1)求函数f(x)的定义域;
(2)若函数f(x)在区间[10,+∞)上是增函数,求实数a的取值范围.

分析 (1)若函数$f(x)=lg\frac{ax-1}{x-1}({a>0})$的真数为正,则(ax-1)(x-1)>0,分类讨论,可得不同情况下函数f(x)的定义域;
(2)若函数f(x)在区间[10,+∞)上是增函数,只需要$g(x)=a+\frac{a-1}{x-1}$在区间[10,+∞)上是增函数,且大于零恒成立,进而得到实数a的取值范围.

解答 解:(1)若函数$f(x)=lg\frac{ax-1}{x-1}({a>0})$的真数为正,
则(ax-1)(x-1)>0,
当a=1时,函数f(x)的定义域为{x|x≠1};
当0<a<1时,函数f(x)的定义域为$\left\{{x|x<1或x>\frac{1}{a}}\right\}$;
当a>1时$\left\{{x|x<\frac{1}{a}或x>1}\right\}$.
(2)$f(x)=lg\frac{{a({x-1})+a-1}}{x-1}=lg({a+\frac{a-1}{x-1}})$,
函数f(x)在区间[10,+∞)上是增函数,
只需要$g(x)=a+\frac{a-1}{x-1}$在区间[10,+∞)上是增函数,且大于零.
即当x1>x2≥10时,$g({x_1})-g({x_2})=\frac{{({{x_2}-{x_1}})({a-1})}}{{({{x_1}-1})({{x_2}-1})}}>0$恒成立.
∵x2-x1<0,(x1-1)(x2-1)>0,
∴k-1<0即可.
$g(x)=a+\frac{a-1}{x-1}$在区间[10,+∞)上是增函数,
要使g(x)>0恒成立,
只要$g({10})>0⇒k>\frac{1}{10}$,
∴$\frac{1}{10}<k<1$.

点评 本题考查的知识点是函数的定义域,复合函数的单调性,函数恒成立问题,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.一个正方体的棱长为2,则该正方体的内切球的体积为$\frac{4π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}中,${a_n}≠0,{a_1}=1,\frac{1}{{{a_{n+1}}}}=\frac{1}{a_n}+2$,则a20的值为$\frac{1}{39}$ .

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知实数x,y满足$\left\{\begin{array}{l}{x≥1}\\{y≥-1}\\{4x+y≤9}\\{x+y≤3}\end{array}\right.$,记z=mx+y,若z的最大值为f(m),则当m∈[2,4]时,f(m)最大值和最小值之和为(  )
A.4B.10C.13D.14

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知二次函数f(x)满足:①$f(x)≤f({\frac{1-2a}{2}})({a∈R})$; ②若x1<x2且x1+x2=0时,有f(x1)>f(x2).则实数a的取值范围是($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.数列{an},定义{△an}为数列{an}的一阶差分数列,其中△an=an+1-an(n∈N*
(1)若an=n2-n,试判断{△an}是否是等差数列,并说明理由;
(2)若a1=1,△an-an=2n,求数列{an}的通项公式;
(3)对(b)中的数列{an},是否存在等差数列{bn},使得b1C${\;}_{n}^{1}$+b2C${\;}_{n}^{2}$+…+bnC${\;}_{n}^{n}$=an,对一切n∈N*都成立,若存在,求出数列{bn}的通项公式,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设m∈R,若函数f(x)=(m+1)x${\;}^{\frac{2}{3}}$+mx+1是偶函数,则f(x)的单调递增区间是[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,在正方体中,E,F是棱A'B'与D'C'的中点,面EFCB与面ABCD所成二面角(取锐角)的正切值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的所有数据.
B地区用户满意度评分:92,60,69,70,76,82,70,85,72,87,67,50,91,96,70,82,94,85,75,59,74,89,77,88,78,67,79,94,78,65,64,73,60,75,86,65,90,84,74,80
(1)完成B地区用户满意度评分的频率分布表并作出频率分布直方图;
B地区用户满意度评分的频率分布表
满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100)
频数
频率

(2)通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);
(3)根据用户满意度评分,将用户的满意度分为三个等级:
满意度评分低于70分70分到89分不低于90分
满意度等级不满意满意非常满意
利用样本近似估计总体的思想方法,估计哪个地区用户的满意度等级为不满意的概率大?说明理由.

查看答案和解析>>

同步练习册答案