分析 根据展开式中所有二项式系数的和等于2n=256,求得 n=8.在展开式的通项公式中,令x的幂指数等于0,求得r的值,即可求得展开式中的常数项.
解答 解:∵在($\root{3}{x}$-$\frac{2}{x}$)n的二项式中,所有的二项式系数之和为256,
∴2n=256,解得n=8,
∴($\root{3}{x}$-$\frac{2}{x}$)8中,Tr+1=${C}_{8}^{r}(\root{3}{x})^{8-r}(-\frac{2}{x})^{r}$=$(-2)^{r}{C}_{8}^{r}{x}^{\frac{8-4r}{3}}$,
∴当$\frac{8-4r}{3}$=0,即r=2时,常数项为T3=(-2)2${C}_{8}^{2}$=112.
故答案为:112.
点评 本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{π}{2}$,$\frac{3π}{4}$) | B. | ($\frac{π}{4}$,$\frac{3π}{4}$) | C. | ($\frac{3π}{4}$,$\frac{5π}{4}$) | D. | ($\frac{5π}{4}$,2π) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{51}{60}$ | B. | $\frac{60}{51}$ | C. | $\frac{19}{20}$ | D. | $\frac{7}{8}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com