精英家教网 > 高中数学 > 题目详情
2.等差数列{an}中,an≠0,且$2{a_3}-a_7^2+2{a_{11}}=0$,则a7的值为(  )
A.8B.4C.2D.0

分析 由等差数列的性质,a3+a11=2a7,代人即可解出a7=4.

解答 解:等差数列{an}中,2a3-a72+2a11=0,
∴由等差数列性质,a3+a11=2a7,代人得4a7-a72=0,
又等差数列{an}各项不为零,
∴a7=4.
故选:B.

点评 本题考查了等差数列性质的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若0<θ<$\frac{π}{2}$,化简$\frac{sinθ}{1-cosθ}$$•\sqrt{\frac{tanθ-sinθ}{tanθ+sinθ}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的一个焦点与抛物线y2=8x焦点相同,离心率为$\frac{1}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点M(m,0)在椭圆C的长轴上,点P是椭圆上任意一点.当|$\overrightarrow{MP}$|最小时,点P恰好落在椭圆的右顶点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{3}$,短轴长为$2\sqrt{2}$,过右焦点F的直线l与C相交于A,B两点.O为坐标原点.
(1)求椭圆C的方程;
(2)若点P在椭圆C上,且$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知不等式组$\left\{\begin{array}{l}2x-y+3≥0\\ x≤1\\ x-2y≤0\end{array}\right.$表示的平面区域为D,若函数y=|x|+m的图象上存在区域D上的点,则实数m的最小值为(  )
A.-4B.-3C.-1D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)对任意x∈(0,+∞),满足f($\frac{1}{x}$)=$\frac{2}{x}$-log2x-3
(Ⅰ)求f(x)的解析式;
(Ⅱ)判断并证明f(x)在定义域上的单调性;
(Ⅲ)证明函数f(x)在区间(1,2)内有唯一零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}中,a1=3,(n+1)an-nan+1=1,n∈N*
(Ⅰ)证明:数列{an}是等差数列,并求{an}的通项公式;
(Ⅱ)设数列{bn}的通项bn=$\frac{4}{{(a}_{n}-1){(a}_{n+1}-1)}$,记数列{bn}的前n项和为Tn,若对n∈N*,Tn≤k(n+4)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,AB=3,AC=4,N是AB的中点,M是边AC(含端点)上的动点.
(1)若∠BAC=60°,求|$\overrightarrow{BC}$|的值;
(2)若$\overrightarrow{BM}$⊥$\overrightarrow{CN}$,求cosA的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.给出下列命题:
①若a,b,m都是正数,且$\frac{a+m}{b+m}>\frac{a}{b}$,则a<b;
②若f'(x)是f(x)的导函数,若?x∈R,f'(x)≥0,则f(1)<f(2)一定成立;
③命题“?x∈R,x2-2x+1<0”的否定是真命题;
④“|x|≤1,且|y|≤1”是“|x+y|≤2”的充分不必要条件.
其中正确命题的序号是(  )
A.①②③B.①②④C.②③④D.①③④

查看答案和解析>>

同步练习册答案