精英家教网 > 高中数学 > 题目详情
3.已知函数$f(x)={x^2}-\frac{1}{2}lnx+\frac{3}{2}$在其定义域内的一个子区间(a-1,a+1)内不是单调函数,则实数a的取值范围是(  )
A.$({-\frac{1}{2},\frac{3}{2}})$B.$[{1,\frac{5}{4}})$C.$({1,\frac{3}{2}})$D.$[{1,\frac{3}{2}})$

分析 先求出函数的导数,令导函数为0,求出x的值,得到不等式解出k的值即可.

解答 解:函数的定义域为(0,+∞),所以a-1≥0即a≥1,
f′(x)=2x-$\frac{1}{2x}$=$\frac{4{x}^{2}-1}{2x}$,令f′(x)=0,得x=$\frac{1}{2}$或x=-$\frac{1}{2}$(不在定义域内舍),
由于函数在区间(a-1,a+1)内不是单调函数,所以$\frac{1}{2}$∈(a-1,a+1),
即a-1<$\frac{1}{2}$<k+1,解得:-$\frac{1}{2}$<k<$\frac{3}{2}$,
综上得1≤k<$\frac{3}{2}$,
故选:D

点评 本题考查了函数的单调性,导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知m=3$\int_0^π$sinxdx,则二项式(a+2b-3c)m的展开式中ab2cm-3的系数为-6480.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=logax(a>0,a≠1),若f(x1)-f(x2)=1,则f(x${\;}_{1}^{2}$)-f(x${\;}_{2}^{2}$)等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在棱长为a的正方体ABCD-A1B1C1D1中,E、F分别是AB、BC的中点,EF与BD交于点G,M为棱BB1上一点.
(1)证明:EF∥平面 A1C1D;
(2)当B1M:MB的值为多少时,D1M⊥平面 EFB1,证明之;
(3)求点D到平面 EFB1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.一个多面体的三视图(单位:cm)如图所示,其中正视图是正方形,侧视图是等腰三角形,则该几何体的表面积为88cm2;体积为48cm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示,在三棱柱ABC-A1B1C1中,底面△ABC为边长为6的等边三角形,点A1在平面ABC内的射影为△ABC的中心.
(1)求证:BC⊥BB1
(2)若AA1与底面ABC所成角为60°,P为CC1的中点,求直线BB1与平面AB1P所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知P={x|x<2},Q={x|x<a},若“x∈P”是“x∈Q”的必要不充分条件,则实数a的取值范围是(  )(  )
A.(-∞,2)B.(-∞,2]C.(2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2alnx+(a+1)x2+1.
(Ⅰ)当$a=-\frac{1}{2}$时,求函数f(x)的极值;
(Ⅱ)如果对任意x1>x2>0,总有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>{x_1}+{x_2}+4$,求实数a的取值范围;
(Ⅲ)求证:$ln(n+1)>\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}(n>1,n∈{N^*})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.对于函数f(x)=x3-3x2,给出命题:
①f(x)是增函数,无极值;
②f(x)是减函数,无极值;
③f(x)的递增区间为(-∞,0),(2,+∞),递减区间为(0,2);
④f(0)=0是极大值,f(2)=-4是极小值.
其中正确的命题有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案