精英家教网 > 高中数学 > 题目详情
6.已知tan(α-$\frac{β}{2}$)=2,tan(β-$\frac{α}{2}$)=-3,求tan(α+β)的值.

分析 利用两角和的正切公式求得tan$\frac{α+β}{2}$ 的值,再利用二倍角的正切公式,求得tan(α+β)的值.

解答 解:∵tan(α-$\frac{β}{2}$)=2,tan(β-$\frac{α}{2}$)=-3,
∴tan$\frac{α+β}{2}$=tan[(α-$\frac{β}{2}$)+(β-$\frac{α}{2}$)]=$\frac{tan(α-\frac{β}{2})+tan(β-\frac{α}{2})}{1-tan(α-\frac{β}{2})•tan(β-\frac{α}{2})}$=$\frac{2-3}{1-2•(-3)}$=-$\frac{1}{7}$,
∴tan(α+β)=$\frac{2•tan\frac{α+β}{2}}{1{-tan}^{2}\frac{α+β}{2}}$=-$\frac{7}{24}$.

点评 本题主要考查两角和差的正切公式、二倍角的正切公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.甲、乙两位学生通过某种英语听力测试的概率分别为$\frac{1}{2}$、$\frac{2}{3}$,两人同时参加测试,其中有且只有1个通过的概率是(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.有一圆柱形容器,底面半径为10cm,里面装有足够的水,水面高为12cm,有一块金属五棱锥掉进水里全被淹没,结果水面高为15cm,若五棱锥的高为3cm,则五棱锥的底面积是(  )
A.10πcm2B.100cm2C.300cm2D.300πcm2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=(2x+1)ex,f′(x)为f(x)的导函数,则f′(0)的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{3}$=1(a>$\sqrt{3}$)的右焦点为F,右顶点为A,已知$\frac{1}{|OF|}$+$\frac{1}{|OA|}$=$\frac{3e}{|FA|}$,其中O为原点,e为椭圆的离心率.
(1)求椭圆的方程;
(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=$\sqrt{2}$,b=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求函数y=cos(2x+$\frac{π}{4}$)的对称中心,对称轴方程,递减区间和最小正周期.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设n(S)表示集合S中元素的个数,定义A•B=$\left\{\begin{array}{l}{n(A),n(A)≥n(B)}\\{n(B),n(A)<n(B)}\end{array}\right.$,已知A={x||x-a|=1},B={x||x2-2x-3|=a-1},若A•B=2,则实数a的范围(-∞,1]∪(5,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,已知四边形ABCD是圆柱的轴截面,M是下底面圆周上不与点A,B重合的点.
(1)求证:平面DMB⊥平面DAM;
(2)若△AMB是等腰三角形,求该圆柱与三棱锥D-AMB体积的比值.

查看答案和解析>>

同步练习册答案