精英家教网 > 高中数学 > 题目详情
已知函数fn(x)=
1
2
+
1
6
+
1
12
…+
1
n(n+1)
+
2015n+2n+1
2n+2015n+1
(x+1),其中n∈N*,当n=1,2,3,…时,fn(x)的零点依次记作x1,x2,x3,…,则
lim
n→∞
xn=
 
考点:数列的极限
专题:计算题,等差数列与等比数列
分析:利用裂项法求和,令fn(x)=0,解得xn=
n
n+1
(
2
2015
)n+2015
2•(
2
2015
)n+1
-1,利用极限的运算法则即可得出.
解答: 解:函数fn(x)=
1
2
+
1
6
+
1
12
…+
1
n(n+1)
+
2015n+2n+1
2n+2015n+1
(x+1)=1-
1
n+1
+
2015n+2n+1
2n+2015n+1
(x+1),
令fn(x)=0,解得xn=
n
n+1
(
2
2015
)n+2015
2•(
2
2015
)n+1
-1.
lim
n→∞
xn=1×2015-1=2014.
故答案为:2014.
点评:本题考查了裂项法求和、数列极限的运算法则,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x+
a
x
,且f(1)=3
(1)求a的值;
(2)判断函数f(x)在(
2
,+∞)
上是增函数还是减函数?并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=Asin(ωx+φ)+1(x∈R,A>0,ω>0,0<φ<
π
2
)的周期开为π,且图象上的一个最低点为M(
3
,-1).
(1)求f(x)的解析式;
(2)已知f(
α
2
)=
1
3
,α∈[0,π],求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某流程图如图所示,现输入如下四个函数,则可以输出的函数是(  )
A、f(x)=
|x|
x
B、f(x)=
cosx
x
(-
π
2
<x<
π
2
,且x≠0)
C、f(x)=
2x-1
2x+1
D、f(x)=x2ln(x2+1)

查看答案和解析>>

科目:高中数学 来源: 题型:

有两箱子,里面都装有红球和白球,甲箱摸到的红球概率为
1
4
,乙箱摸到红球概率为
1
2
,左手和右手分别同时伸入甲、乙两个箱子,各摸出一个球,都摸到红球的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=2x为双曲线Γ:
x2
a2
-
y2
b2
=1
(a>0,b>0)的一条渐近线,则双曲线Γ的离心率为(  )
A、
3
2
B、
5
2
C、2
D、
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:ax+2y+6=0,l2:x+(a-1)y+a2-1=0,若l1⊥l2,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项an=
1
3
n3
-
5
4
n2
+3+m,若数列中的最小项为1,则m的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列各式
(1)2cos
π
2
+sin0-4sin
2
+cosπ;
(2)3cos0-tanπ+sin
π
2
-2cos
2

查看答案和解析>>

同步练习册答案