精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{6}x+2,x>a}\\{{x}^{2}+3x+2,x≤a}\end{array}\right.$,函数g(x)=f(x)-ax,恰有三个不同的零点,则a的取值范围是(  )
A.($\frac{1}{6}$,3-2$\sqrt{2}$)B.($\frac{1}{6}$,$\frac{3}{2}$)C.(-∞,3-2$\sqrt{2}$)D.(3-2$\sqrt{2}$,+∞)

分析 利用函数g(x)=f(x)-ax,恰有三个不同的零点,推出函数f(x)与y=ax有3个交点,转化为直线y=ax与f(x)=x2+3x+2,x≤a有2个交点,与f(x)=$\frac{1}{6}x+2$,x>a有1个交点,列出不等式求解即可.

解答 解:函数g(x)=f(x)-ax,恰有三个不同的零点,就是函数f(x)与y=ax有3个交点,也就是函数y=ax与f(x)=x2+3x+2,x≤a的图象有2个交点,y=ax与f(x)=$\frac{1}{6}x+2$,x>a的图象有1个交点,
画出函数f(x)与y=ax的图象如图,

函数y=ax,看做直线斜率为a,由图象可知a$>\frac{1}{6}$,a小于直线与抛物线相切时的斜率,
可得$\left\{\begin{array}{l}{y=ax}\\{y={x}^{2}+3x+2}\end{array}\right.$,可得x2+(3-a)x+2=0,△=(3-a)2-8=0,解得a=3-2$\sqrt{2}$.
综上a∈($\frac{1}{6}$,3-2$\sqrt{2}$).
故选:A.

点评 本题考查函数的零点个数的求法与应用,考查数形结合以及分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知集合A={1,2,3},B={1,3},则A∩B=(  )
A.{2}B.{1,3}C.{1,2}D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x<0}\\{m-{x}^{2},x≥0}\end{array}\right.$,给出下列两个命题:命题p:?m∈(-∞,0),方程f(x)=0有实数解;命题q:当m=$\frac{1}{4}$时,f(f(-1))=0,则下列命题为真命题的是(  )
A.p∧qB.(¬p)∧qC.p∧(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.实数x,y满足$\left\{\begin{array}{l}{x≤4}\\{x+y-2≥0}\\{x-y+8≥0}\end{array}\right.$,若z=$\frac{1}{2}$ax+y的最大值为2a+12,最小值为2a-2,则a的取值范围是[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.以下四个命题中,真命题是(  )
A.?x∈(0,π),sinx=tanx
B.“?x∈R,x2+x+1>0”的否定是“?x0∈R,x02+x0+1<0”
C.?θ∈R,函数f(x)=sin(2x+θ)都不是偶函数
D.条件p:$\left\{\begin{array}{l}{x+y>4}\\{xy>4}\end{array}\right.$,条件q:$\left\{\begin{array}{l}{x>2}\\{y>2}\end{array}\right.$则p是q的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$\frac{1-ai}{1+i}=b-i$(a,b∈R),其中i为虚数单位,则a+b=(  )
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=alnx+2a,g(x)=x+$\frac{a}{x}$(其中a为常数,a∈R).
(Ⅰ)求函数g(x)的单调区间;
(Ⅱ)当a>0时,是否存在实数a,使得对于任意x1、x2∈[1,e]时,不等式f(x1)-g(x2)>0恒成立?如果存在,求a的取值范围;如果不存在,说明理由(其中e是自然对数的底数,e=2.71828…)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若实数x,y满足约束条件$\left\{\begin{array}{l}{2x+y≤4}\\{x-y≥1}\\{x-2y≤2}\end{array}\right.$,则目标函数z=3x+y的最大值为(  )
A.6B.$\frac{17}{3}$C.$\frac{20}{3}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数$f(x)=Asin({ωx+φ})({A>0,ω>0,|φ|≤\frac{π}{2}})$的部分图象如图所示,其中$f({\frac{π}{3}})=0,f({\frac{7π}{12}})=-2$,给出下列结论:
①最小正周期为π;
②f(0)=1;
③函数$y=f({x-\frac{π}{6}})$是偶函数;
④$f({\frac{12π}{11}})<f({\frac{14π}{13}})$;
⑤$f(x)+f({\frac{4π}{3}-x})=0$.
其中正确结论的个数是(  )
A.5B.4C.3D.2

查看答案和解析>>

同步练习册答案