精英家教网 > 高中数学 > 题目详情
17.已知f(α)=$\frac{{sin(π-α)cos(2π-α)sin(-α+\frac{3π}{2})}}{tan(-α-π)sin(-π-α)cos(-π+α)}$;
(1)化简f(α);
(2)若α的终边在第二象限,$sinα=\frac{3}{5}$,求f(α)的值.

分析 (1)直接由三角函数的诱导公式化简即可得答案;
(2)由同角三角函数基本关系计算即可得答案.

解答 解:(1)f(α)=$\frac{{sin(π-α)cos(2π-α)sin(-α+\frac{3π}{2})}}{tan(-α-π)sin(-π-α)cos(-π+α)}$
=$\frac{sinα•cosα•(-cosα)}{-tanα•sinα•(-cosα)}=-\frac{co{s}^{2}α}{sinα}$;
(2)∵$sinα=\frac{3}{5}$,
∴$co{s}^{2}α=1-si{n}^{2}α=1-\frac{9}{25}=\frac{16}{25}$.
∴f(α)=$\frac{-co{s}^{2}α}{sinα}=-\frac{16}{15}$.

点评 本题考查了三角函数的诱导公式,考查了同角三角函数基本关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知函数y=f(x)的图象如图,则${f^'}({x_A})与{f^'}({x_B})$的关系是:(  )
A.${f^'}({x_A})>{f^'}({x_B})$B.${f^'}({x_A})<{f^'}({x_B})$C.${f^'}({x_A})={f^'}({x_B})$D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.实数x,y满足$\left\{\begin{array}{l}x+y≥1\\ x-y≥-1\\ 2x-y≤2\end{array}\right.$则z=4x+3y的最大值为24.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知角α的终边过点P(-4a,3a),(a<0)则2sinα+cosα的值是-$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.椭圆$\frac{{x}^{2}}{8}+{y}^{2}$=1的左、右焦点为F1,F2,点P在椭圆上,则|PF1|•|PF2|最大值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A,B,C的对边分别为a,b,c,且a=2b,又sinA,sinC,sinB成等差数列.
(Ⅰ)求cos(B+C)的值;
(Ⅱ)若S△ABC=$\frac{3\sqrt{15}}{3}$,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x3+x.
(1)求定积分$\int_{-3}^3{({f(x)+{x^2}})dx}$的值;
(2)若曲线y=f(x)的一条切线经过点(0,-2),求此切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数$f(x)=2sin(ωx+\frac{π}{4})(ω>0)$与$g(x)=2cos(2x-\frac{π}{4})(ω>0)$的对称轴完全相同,则函数$f(x)=2sin(ωx+\frac{π}{4})(ω>0)$在[0,π]上的一个递增区间是(  )
A.$[0,\frac{π}{8}]$B.$[0,\frac{π}{4}]$C.$[\frac{π}{8},π]$D.$[\frac{π}{4},π]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数$y=tan(\frac{π}{4}-x)$的定义域是(  )
A.{x|x≠$\frac{π}{4}$,k∈Z x∈R}B.{x|x≠kπ$+\frac{π}{4}$,k∈Z,x∈R}
C.{x|x≠$-\frac{π}{4}$,k∈Z x∈R}D.{x|x≠kπ$+\frac{3}{4}π$,k∈Z,x∈R}

查看答案和解析>>

同步练习册答案