精英家教网 > 高中数学 > 题目详情
18.已知点Q是抛物线C:y2=2px(p>0)上的动点,点Q到抛物线准线与到点P(-$\frac{1}{2}$,1)的距离之和的最小值为$\sqrt{2}$.
(1)求抛物线C的方程;
(2)如图,设直线y=kx+b与抛物线C交于两点A(x1,y1),B(x2,y2)且|y1-y2|=2,过弦AB的中点M作垂直于y轴的直线与抛物线C交于点D,求△ABD的面积.

分析 (1)由点Q到抛物线准线与到点P(-$\frac{1}{2}$,1)的距离之和的最小值为$\sqrt{2}$,得点Q到抛物线的焦点与到点P(-$\frac{1}{2}$,1)的距离之和的最小值为$\sqrt{2}$,可得p,即可求抛物线C的方程;
(2)把直线的方程与抛物线方程联立可得△>0及根与系数的关系,再利用三角形的面积公式即可得出.

解答 解:(1)∵点Q到抛物线准线与到点P(-$\frac{1}{2}$,1)的距离之和的最小值为$\sqrt{2}$,
∴点Q到抛物线的焦点与到点P(-$\frac{1}{2}$,1)的距离之和的最小值为$\sqrt{2}$,
∴$\sqrt{(\frac{p}{2}+\frac{1}{2})^{2}+1}$=$\sqrt{2}$,
∴p=1,
∴抛物线C的方程为y2=2x;
(2)联立直线y=kx+b与抛物线C得:k2x2+2(kb-1)x+b2=0(k≠0),△>0,即1-2kb>0,
x1+x2=$\frac{2(1+kb)}{{k}^{2}}$,x1x2=$\frac{{b}^{2}}{{k}^{2}}$.
|y1-y2|=k|x1-x2|=$\sqrt{\frac{4(1-2kb)}{{k}^{2}}}$=2,
∴1-2kb=k2
∵M($\frac{1-kb}{{k}^{2}}$,$\frac{1}{k}$),D($\frac{1}{2{k}^{2}}$,$\frac{1}{k}$),
∴△ABD的面积S=$\frac{1}{2}$|MD||y1-y2|=$\frac{1}{2}×|\frac{1-2kb}{2{k}^{2}}|×2$=$\frac{1}{2}$.

点评 本题综合考查了抛物线的标准方程及其性质、弦长公式、直线与抛物线相交问题转化为△>0及根与系数的关系、三角形的面积计算公式等基础知识与基本技能方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,在四边形ABCD中,CB=CA=$\frac{1}{2}$AD=1,$\overrightarrow{CA}•\overrightarrow{AD}$=-1,sin∠BCD=$\frac{3}{5}$.
(1)求证:AC⊥CD;
(2)求四边形ABCD的面积;
(3)求sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,PC⊥平面PAD,AB∥CD,CD=2AB=2BC,M,N分别是棱PA,CD的中点.
(1)求证:PC∥平面BMN;
(2)求证:平面BMN⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设全集为R,集合A={x|$\frac{1-x}{1+x}$≥0},B={x|-2≤x<0},则(∁RA)∩B=(  )
A.(-1,0)B.[-1,0)C.[-2,-1]D.[-2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,a,b,c成等比数列.
(1)若$\frac{1}{tanA}$+$\frac{1}{tanC}$=$\frac{2\sqrt{3}}{3}$,求∠B值;
(2)若△ABC外接圆的面积为4π,求△ABC面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.“a>2且b>2”是“ab>4”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x2+ax+1,其中a∈R,且a≠0
(Ⅰ)若f(x)的最小值为-1,求a的值;
(Ⅱ)求y=|f(x)|在区间[0,|a|]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四棱柱ABCD-A1B1C1D1中,底面ABCD和侧面BCC1B1都是矩形,E是CD的中点,D1E⊥CD.

(1)求证;D1E⊥底面ABCD;
(2)在所给方格纸中(方格纸中每个小正方形的边长为1),将四棱柱ABCD-A1B1C1D1的三视图补充完整,并根据三视图,求出三棱锥B-DD1E的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知点(a,1)到直线x-y+1=0的距离为1,则a的值为(  )
A.1B.-1C.$\sqrt{2}$D.±$\sqrt{2}$

查看答案和解析>>

同步练习册答案