精英家教网 > 高中数学 > 题目详情
已知3z1+(z2+1)i=2z2-(z1-2)i.
(1)若z1,z2在付平面内的对应点关于原点对称,求z1,z2的值;
(2)若z1,z2在复平面内的对应点关于虚轴对称,求z1,z2的值.
考点:复数的代数表示法及其几何意义
专题:数系的扩充和复数
分析:(1)由于z1,z2在付平面内的对应点关于原点对称,可设z1=x+yi(x,y∈R),z2=-x-yi.代入利用复数的运算法则和复数相等即可得出.
(2)由于z1,z2在复平面内的对应点关于虚轴对称,可设z1=x+yi,z2=-x+yi(x,y∈R).代入利用复数的运算法则和复数相等即可得出.
解答: 解:(1)∵z1,z2在付平面内的对应点关于原点对称,∴可设z1=x+yi(x,y∈R),z2=-x-yi.
∵3z1+(z2+1)i=2z2-(z1-2)i,∴3(x+yi)+(-x-yi+1)i=2(-x-yi)-(x+yi-2)i,
化为5x+(5y-1)i=0,
∴5x=0,5y-1=0,解得x=0,y=
1
5

∴z1=
1
5
i
z2=-
1
5
i

(2)∵z1,z2在复平面内的对应点关于虚轴对称,
∴可设z1=x+yi,z2=-x+yi(x,y∈R).
∵3z1+(z2+1)i=2z2-(z1-2)i,
∴3(x+yi)+(-x+yi+1)i=2(-x+yi)-(x+yi-2)i,
化为5x+(y-1)i=0,
∴5x=0,y-1=0,
解得x=0,y=1.
∴z1=i,z2=i.
点评:本题考查了复数的运算法则和复数相等及其几何意义,考查了计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
log
1
2
(x+1),(x>0)
2x,(x≤0)
则f(f(0))=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题正确的是
 
(写序号)
①命题“?x0∈R,x02+1>3x0”的否定是“?x∈R,x2+1≤3x”;
②函数f(x)=cos2ax-sin2ax的最小正周期为“π”是“a=1”的必要不充分条件;
③偶函数y=f(x)的图象关于直线x=2对称,若f(3)=3,则f(-1)=-3;
④x2+2x≥ax在x∈[1,2]上恒成立?(x2+2x)min≥(ax)max在x∈[1,2]上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知M(-c,0),N(c,0),若|PM|-|PN|=c(c>0),则动点P的轨迹是(  )
A、双曲线的左支
B、双曲线的右支
C、以N为端点的射线
D、线段MN

查看答案和解析>>

科目:高中数学 来源: 题型:

求过圆x2+y2=4上一点(-1,
3
)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

同学们都有这样的阶梯经验,在某些数列的求和中,可把其中一项分裂成两项之差,使得某些项可以相互抵消,从而实现化简求和,已知数列{an}的通项为an=
1
n(n+1)
,则将其通项分裂为an=
1
n
-
1
n+1
,故数列{an}的前n项和Sn=(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)=1-
1
n+1
=
n
n+1
.“斐波那契数列“是数学是上一个著名的数列,在斐波那契数列{an}中,a1=1,a2=1,an+an+1=an+2(n∈N*),若a2013=a,那么数列{an}的前2011项的和是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2ax-1在区间[0,2]上的最大值为7,则g(x)=logax在区间[1,4]上的最大值为(  )
A、0B、1C、2D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

tan
3
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

θ为小于360°的正角,这个角的7倍角的终边与这个角的终边重合,则θ=
 

查看答案和解析>>

同步练习册答案