分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(2)利用导数可得函数f(x)在∈(-∞,m-ln2)递减,在(m-ln2,+∞)递增,f(x)的最小值为g(m)=f(m-ln2)=1+ln2-m,g(m)的最小值g(1)=ln2.
解答 解:(1)m=ln2时,f(x)=2ex-ln2-x,f′(x)=ex-1,
令f′(x)>0,解得:x>0,令f′(x)<0,解得:x<0,
故f(x)在(-∞,0)递减,在(0,+∞)递增;
(2)f′(x)=2ex-m-1,令f′(x)=2ex-m-1=0,得x=m-ln2.
当x∈(-∞,m-ln2)时,f′(x)<0,当x∈(m-ln2,+∞)时,f′(x)>0.
∴函数f(x)在∈(-∞,m-ln2)递减,在(m-ln2,+∞)递增,
f(x)的最小值为g(m)=f(m-ln2)=1+ln2-m,
∵m≤1,∴g(m)的最小值g(1)=ln2.
点评 本题考查了函数的单调性,最值,及零点问题,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | π | B. | 4π | C. | 9π | D. | 16π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| x | $\frac{2π}{3}$ | $\frac{8π}{3}$ | |||
| Asin(ωx+φ) | 0 | 3 | 0 | -3 | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2016×2017 | B. | 20172 | C. | 2017×2018 | D. | 2018×2019 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 三角形 | B. | 四边形 | C. | 五边形 | D. | 六边形 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com