精英家教网 > 高中数学 > 题目详情
8.已知θ∈[0,2π),当θ取遍全体实数时,直线xcosθ+ysinθ=4+$\sqrt{2}$sin(θ+$\frac{π}{4}$)所围成的图形的面积是(  )
A.πB.C.D.16π

分析 设点A(a,b),则点A得到直线xcosθ+ysinθ=4+$\sqrt{2}$sin(θ+$\frac{π}{4}$)的距离为d,根据点到直线的距离公式求出当a=1,b=1时,d=4,根据直线与圆相切时,圆心到直线的距离等于半径得到直线组xcosθ+ysinθ=4+$\sqrt{2}$sin(θ+$\frac{π}{4}$)所围成的图形是以(1,1)为圆心,以4为半径的圆,则答案可求.

解答 解:设点A(a,b),则点A得到直线xcosθ+ysinθ=4+$\sqrt{2}$sin(θ+$\frac{π}{4}$)的距离为d,
则d=$\frac{|(a-1)cosθ+(b-1)sinθ-4|}{\sqrt{si{n}^{2}θ+co{s}^{2}θ}}$,当a=1,b=1时,d=4,根据直线与圆相切时,圆心到直线的距离等于半径得:
直线组xcosθ+ysinθ=4+$\sqrt{2}$sin(θ+$\frac{π}{4}$)所围成的图形是以(1,1)为圆心,以4为半径的圆,其面积为16π.
故选:D.

点评 本题考查直线系方程的应用,考查数学转化思想方法,考查推理能力与计算能力,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=2sin(2ωx+\frac{π}{6})+1$(其中0<ω<2),若直线$x=\frac{π}{6}$是函数f(x)图象的一条对称轴.
(1)求ω及f(x)的最小正周期;
(2)求函数f(x)在$x∈[{-\frac{π}{2},\frac{π}{2}}]$上的单调递减区间.
(3)若函数g(x)=f(x)+a在区间$[{0,\frac{π}{2}}]$上的图象与x轴没有交点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.《九章算术》是我国古代内容极为丰富的数学名著,书中将底面为直角三角形,且侧棱与底面垂直的棱柱称为堑堵,将底面为矩形的棱台称为刍童.在如图所示的堑堵ABM-DCP与刍童的组合体中AB=AD,A1B1=A1D1.棱台体积公式:V=$\frac{1}{3}$(S′+$\sqrt{S′S}$+S)h,其中S′,S分别为棱台上、下底面面积,h为棱台高.
(Ⅰ)证明:直线BD⊥平面MAC;
(Ⅱ)若AB=1,A1D1=2,MA=$\sqrt{3}$,三棱锥A-A1B1D1的体积V=$\frac{2\sqrt{3}}{3}$,求该组合体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若复数$\frac{2+ai}{1-i}({a∈R})$是纯虚数(i是虚数单位),则复数z=a+(a-3)i在复平面内对应的点位于第四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.总体由编号为01,02,03,…,49,50的50个个体组成,利用随机数表(以下选取了随机数表中的第1行和第2行)选取5个个体,选取方法是从随机数表第1行的第9列和第10列数字开始由左向右读取,则选出来的第4个个体的编号为(  )
78 16 65 72 08  02 63 14 07 02  43 69 69 38 74
32 04 94 23 49  55 80 20 36 35  48 69 97 28 01
A.05B.09C.07D.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a,b∈R,若a>b,则(  )
A.$\frac{1}{a}<\frac{1}{b}$B.ac2>bc2C.2-a<2-bD.lga>lgb

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求倾斜角为直线y=-x+1的倾斜角的$\frac{1}{3}$,且分别满足下列条件的直线方程:
(1)经过点(-4,1);
(2)在y轴上的截距为-10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x-3.
(1)求f(3)+f(-1)的值;
(2)求f(x)在R上的解析式;
(3)画出函数f(x)的图象,并写出函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=2ex-m-x,其中m为实数.
(1)当m=ln2时,求函数f(x)的单调区间;
(2)若m≤1,对任意x∈R,记f(x)的最小值为g(m),求g(m)的最小值.

查看答案和解析>>

同步练习册答案