精英家教网 > 高中数学 > 题目详情
9.函数$f(x)=\frac{1}{{\sqrt{x+3}}}+{log_2}(6-x)$的定义域是(  )
A.(6,+∞)B.[-3,6)C.(-3,+∞)D.(-3,6)

分析 根据二次根式以及对数函数的性质,求出函数的定义域即可.

解答 解:由题意得:
$\left\{\begin{array}{l}{x+3>0}\\{6-x>0}\end{array}\right.$,解得:-3<x<6,
故函数的定义域是(-3,6),
故选:D.

点评 本题考查了求函数的定义域问题,考查对数函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.⊙c:x2+y2-2ax-2(2a-1)y+4(a-1)=0,其中a∈R,
(1)当a变化时,求圆心的轨迹方程,
(2)证明⊙c过定点,
(3)求面积最小的⊙c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求函数y=-x(x-a)在x∈[-1,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知流程图如图,则输出的n=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.2017年某公司举办产品创新大赛,经评委会初评,有两个优秀方案(编号分别为1,2)入选,组委会决定请车间100名经验丰富的技工对两个方案进行等级(等级从高到低依次为A、B、C、D、E)评价,评价结果统计如表:
ABCDE
1号1535ab10
2号733202bc
(1)若从对1号创新方案评价为C、D的技工中按分层抽样的方法抽取4人,其中从评价为C的技工中抽取了3人,求a,b,c的值;
(2)若从两个创新方案评价为C、D的评价表中各抽取10%进行分析,再从中选取2份进行详细研究,求选出的2份评价表中至少有1份评价为D的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.曲线C的极坐标方程是ρ=2sinθ,则曲线C上的点到直线l:$\left\{\begin{array}{l}{x=\sqrt{3}t+\sqrt{3}}\\{y=-3t+2}\end{array}\right.$(t为参数)的最短距离是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知角α的终边过点P(-4,3),则2sinα的值是(  )
A.$\frac{3}{5}$B.$-\frac{4}{5}$C.$-\frac{8}{5}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是(  )
A.至少有一个白球;都是白球B.至少有一个白球;至少有一个红球
C.至少有一个白球;红、黑球各一个D.恰有一个白球;一个白球一个黑球

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某校为了解高一期末数学考试的情况,从高一的所有学生数学试卷中随机抽取n份试卷进行成绩分析,得到数学成绩频率分布直方图(如图所示),其中成绩在[50,60)的学生人数为6.
(Ⅰ)求直方图中x的值;
(Ⅱ)求n的值;
(Ⅲ)试根据样本估计“该校高一学生期末数学考试成绩≥70”的概率.

查看答案和解析>>

同步练习册答案