精英家教网 > 高中数学 > 题目详情
1.一个底面半径为2的圆柱被与其底面所成角是60°的平面所截,截面是一个椭圆,则该椭圆的焦距等于$4\sqrt{3}$.

分析 利用已知条件,求出题意的长半轴,短半轴,然后求出半焦距,即可.

解答 解:因为底面半径为R的圆柱被与底面成30°的平面所截,其截口是一个椭圆,
则这个椭圆的短半轴为:R,长轴为:$\frac{2R}{cos60°}$=8,
∵a2=b2+c2,∴c=$\sqrt{16-4}$=2$\sqrt{3}$,
∴椭圆的焦距为$4\sqrt{3}$;
故答案为:4$\sqrt{3}$.

点评 本题考查椭圆焦距的求法,注意椭圆的几何量关系的正确应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率$e=\frac{1}{2}$,且过点Q$(1,\;\frac{3}{2})$
(1)求椭圆C的方程.
(2)椭圆C长轴两端点分别为A,B,点P为椭圆上异于A,B的动点,定直线x=4与直线PA,PB分别交于M,N两点,直线PA,PB的斜率分别为k1,k2
①证明${k_1}{k_2}=-\frac{3}{4}$;
②若E(7,0),过E,M,N三点的圆是否过x轴上不同于点E的定点?若经过,求出定点坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设常数a>0,若${(x+\frac{a}{x})^9}$的二项展开式中x5的系数为144,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知A,B分别是函数f(x)=2sinωx(ω>0)在y轴右侧图象上的第一个最高点和第一个最低点,且∠AOB=$\frac{π}{2}$,则该函数的最小正周期是$\frac{8\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知$\frac{\overline z}{1-i}=2+i$,则复数z的虚部为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)=sin(2x+\frac{π}{3})$在区间[0,a](其中a>0)上单调递增,则实数a的取值范围是(  )
A.$0<a≤\frac{π}{2}$B.$0<a≤\frac{π}{12}$
C.$a=kπ+\frac{π}{12},k∈{N^*}$D.$2kπ<a≤2kπ+\frac{π}{12},k∈N$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2|x+2|-|x+1|,无穷数列{an}的首项a1=a.
(1)如果an=f(n)(n∈N*),写出数列{an}的通项公式;
(2)如果an=f(an-1)(n∈N*且n≥2),要使得数列{an}是等差数列,求首项a的取值范围;
(3)如果an=f(an-1)(n∈N*且n≥2),求出数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.由n(n≥2)个不同的数构成的数列a1,a2,…an中,若1≤i<j≤n时,aj<ai(即后面的项aj小于前面项ai),则称ai与aj构成一个逆序,一个有穷数列的全部逆序的总数称为该数列的逆序数.如对于数列3,2,1,由于在第一项3后面比3小的项有2个,在第二项2后面比2小的项有1个,在第三项1后面比1小的项没有,因此,数列3,2,1的逆序数为2+1+0=3;同理,等比数列$1,-\frac{1}{2},\frac{1}{4},-\frac{1}{8}$的逆序数为4.
(1)计算数列${a_n}=-2n+19(1≤n≤100,n∈{N^*})$的逆序数;
(2)计算数列${a_n}=\left\{\begin{array}{l}{({\frac{1}{3}})^n},n为奇数\\-\frac{n}{n+1},n为偶数\end{array}\right.$(1≤n≤k,n∈N*)的逆序数;
(3)已知数列a1,a2,…an的逆序数为a,求an,an-1,…a1的逆序数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数$f(x)=\left\{{\begin{array}{l}{{2^x}+1,x<2}\\{{x^2}+px,x≥2}\end{array}}\right.$,若f(f(0))=5p,则p的值为$\frac{4}{3}$.

查看答案和解析>>

同步练习册答案