精英家教网 > 高中数学 > 题目详情
2.若f′(x)是f(x)=$\frac{1}{3}$x3-2x+1的导函数,则f′(2)=2.

分析 先求函数f(x)的导函数,然后在导函数解析式中把x代2求值.

解答 解:因为函数f(x)=$\frac{1}{3}$x3-2x+1,
所以其导函数 f′(x)=x2-2,
所以f′(2)=22-2=2,
故答案为:2.

点评 本题考查了导数的运算,已知函数解析式,求函数在x取某一具体值时的导数值属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.等差数列{an}前n项和为Sn,${S_p}=\frac{p}{q}$,${S_q}=\frac{q}{p}$(p≠q),则Sp+q的值是(  )
A.大于4B.小于4C.等于4D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,在△ABC中,若AB=AC=3,cos∠BAC=$\frac{1}{2}$,$\overrightarrow{DC}$=2$\overrightarrow{BD}$,则$\overrightarrow{AD}•\overrightarrow{BC}$=$-\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF=3$\sqrt{6}$.
(1)(文理)求证:AC⊥平面BDE;
(2)(理)求二面角F-BE-D的余弦值;
(文)求三棱锥F-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设i是虚数单位,若(z-l)(1+i)=1-i,则复数z等于1-i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△OAB中,已知OA=5,OB=4,点P是AB的中点,则$\overrightarrow{OP}•\overrightarrow{AB}$=(  )
A.10B.-$\frac{9}{2}$C.20D.-20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知全集U,集合A={1,3,5},∁UA={2,4,6},则全集U={1,2,3,4,5,6}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.曲线$\left\{\begin{array}{l}x=5cosθ\\ y=4sinθ\end{array}$(θ为参数)的焦点到双曲线x2-$\frac{y^2}{2}$=1的渐近线的距离为(  )
A.$\sqrt{3}$B.$\sqrt{6}$C.$2\sqrt{2}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列四个函数中,在定义域上是减函数的是(  )
A.f(x)=$\frac{1}{x}$B.f(x)=x3C.f(x)=-x2D.f(x)=-x

查看答案和解析>>

同步练习册答案