分析 (1)根据P,O,M三点共线可设$\overrightarrow{OP}=λ\overrightarrow{OM}$,利用数量积公式列方程解出;
(2)计算$\overrightarrow{PA},\overrightarrow{PB}$的模长,代入向量夹角公式计算;
(3)计算$|\overrightarrow{OA}+t\overrightarrow{OP}|$2得到关于t的二次函数,求出函数的最小值即可.
解答 解:(1)∵点P在直线OM上,设$\overrightarrow{OP}=λ\overrightarrow{OM}=(2λ,2λ)$
∴$\overrightarrow{PA}=\overrightarrow{OA}-\overrightarrow{OP}=(-1-2λ,-3-2λ)$,$\overrightarrow{PB}=\overrightarrow{OB}-\overrightarrow{OP}=(5-2λ,3-2λ)$
∴$\overrightarrow{PA}•\overrightarrow{PB}=(-1-2λ)(5-2λ)+(-3-2λ)(3-2λ)=-16$,解得$λ=\frac{1}{2}$,
∴$\overrightarrow{OP}=(1,1)$.
(2)$\overrightarrow{PA}=(-2,-4)$,$\overrightarrow{PB}=(4,2)$,
∴$cos∠APB=\frac{{\overrightarrow{PA}•\overrightarrow{PB}}}{{|\overrightarrow{PA}|•|\overrightarrow{PB}|}}=\frac{-16}{{\sqrt{{{(-2)}^2}+{{(-4)}^2}}•\sqrt{{4^2}+{2^2}}}}=-\frac{4}{5}$.
(3)$\overrightarrow{OA}+t\overrightarrow{OP}=(t-1,t-3)$,
∴${(\overrightarrow{OA}+t\overrightarrow{OP})^2}={(t-1)^2}+{(t-3)^2}=2{t^2}-8t+10$=2(t-2)2+2.
当t=2时,($\overrightarrow{OA}$+t$\overrightarrow{OP}$)2取得最小值2,
∴$|\overrightarrow{OA}+t\overrightarrow{OP}|$的最小值为$\sqrt{2}$.
点评 本题考查了平面向量的数量积运算,夹角公式,模长计算,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)<g(x)<h(x) | B. | g(x)<f(x)<h(x) | C. | g(x)<h(x)<f(x) | D. | h(x)<g(x)<f(x) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(a+b)<f(a) | B. | f(a+b)<f(a)+f(b) | C. | f(a+b)≤a+b | D. | f(a+b)>f(a)+f(b) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com