精英家教网 > 高中数学 > 题目详情
8.在平面直角坐标系中,不等式组$\left\{\begin{array}{l}{y≥0}&{\;}\\{x+3y≤4}&{\;}\\{3x+y≥4}&{\;}\end{array}\right.$表示的平面区域的面积是(  )
A.$\frac{3}{2}$B.$\frac{2}{3}$C.$\frac{4}{3}$D.$\frac{3}{4}$

分析 先画出不等式组表示的平面区域,再由三角形面积公式求之即可.

解答 解:不等式组$\left\{\begin{array}{l}{y≥0}&{\;}\\{x+3y≤4}&{\;}\\{3x+y≥4}&{\;}\end{array}\right.$表示的平面区域如图所示,
解得A(1,1)、B(0,$\frac{4}{3}$)、C($\frac{4}{3}$,0),D(4,0)
所以S△ABCO=$\frac{1}{2}×4×\frac{4}{3}$-$\frac{1}{2}×(4-\frac{4}{3})×1$=$\frac{4}{3}$.
故选:C.

点评 本题主要考查线性规划.考查可行域是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.随着节假日外出旅游人数增多,倡导文明旅游的同时,生活垃圾处理也面临新的挑战,某海滨城市沿海有A,B,C三个旅游景点,在岸边BC两地的中点处设有一个垃圾回收站点O(如图),A,B两地相距10km,从回收站O观望A地和B地所成的视角为60°,且${\overrightarrow{OA}^2}+{\overrightarrow{OB}^2}≥4\overrightarrow{OA}•\overrightarrow{OB}$,设AC=xkm;
(1)用x分别表示${\overrightarrow{OA}^2}+{\overrightarrow{OB}^2}$和$\overrightarrow{OA}•\overrightarrow{OB}$,并求出x的取值范围;
(2)某一时刻太阳与A,C三点在同一直线,此时B地到直线AC的距离为BD,求BD的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.端午节放假,甲回老家过节的概率为$\frac{1}{3}$,乙、丙回老家过节的概率分别为$\frac{1}{4}$,$\frac{1}{5}$.假定三人的行动相互之间没有影响,那么这段时间内至少1人回老家过节的概率为(  )
A.$\frac{59}{60}$B.$\frac{3}{5}$C.$\frac{1}{2}$D.$\frac{1}{60}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.直线l过点(2,1),且它的倾斜角是直线y=x+1的倾斜角的2倍,则直线l的方程为(  )
A.y=2x-3B.x=2C.y=1D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列命题中真命题的是(  )
A.若a>b,则ac2>bc2
B.实数a,b,c满足b2=ac,则a,b,c成等比数列
C.若$θ∈({0,\frac{π}{2}})$,则$y=sinθ+\frac{2}{sinθ}$的最小值为$2\sqrt{2}$
D.若数列{n2+λn}为递增数列,则λ>-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知复数z=(m-1)+(m2+2m-3)i,m≥0,
(Ⅰ)若z是纯虚数,求m的值;
(Ⅱ)若z+$\overline{z}$=2,求z;
( III)在复平面中,设复数z对应的点为P,当m变化时,求动点P的轨迹的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.cos45°cos15°+sin15°sin45°的值为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$f(x)=\frac{a+lnx}{x}$,若曲线f(x)在点(e,f(e))处的切线与直线e2x-y+e=0垂直(其中e为自然对数的底数)
(1)若函数f(x)在(m-1,m+1)上存在极值,求实数m的取值范围.
(2)求证:当x>1时,$f(x)(x{e^x}+1)>\frac{{2({e^x}+{e^{x-1}})}}{x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=sin(x+$\frac{kπ}{2}$),x∈[$\frac{kπ}{2}$,$\frac{(k+1)π}{2}$],k∈Z,①函数f(x)的最小正周期为2π;②函数f(x)值域为[-1,1];③函数f(x)为奇函数;④函数f(x)与y=$\frac{x}{10}$有7个交点.其中正确的序号是②④.

查看答案和解析>>

同步练习册答案