精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)用五点法作函数的图象;

2)说出此图象是由的图象经过怎样的变化得到的;

3)求此函数的对称轴、对称中心、单调递增区间.

【答案】1)见解析;(2)见解析;(3)对称轴;对称中心;单调递增区间.

【解析】

1)根据五点作图法列出表格,找出五点的坐标,在平面直角坐标系中画出图象即可;

2)由三角函数图象平移变换过程,即可得由的图象得到的过程;

3)根据正弦函数的图象与性质,即可由整体代入法分别求得的对称轴、对称中心、单调递增区间.

1)函数,对应五点如下表所示:

将点坐标分别描在平面直角坐标系中,连接各点如下图所示:

2)方法一:将的横坐标扩大为原来的2倍,可得,再将函数图象向右平移个单位可得,最后将纵坐标伸长为原来的倍,即可得

方法二:将向右平移个单位可得,再将横坐标扩大为原来的2倍,可得,最后将纵坐标伸长为原来的倍,即可得

3)由正弦函数的图象与性质可知,函数对称轴满足,解得

由正弦函数的图象与性质可知,函数对称中心满足,解得,所以对称中心为

由正弦函数的图象与性质可知,函数的单调递增区间满足,解得,所以单调递增区间为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器。现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:

维修次数

0

1

2

3

台数

5

10

20

15

以这50台机器维修次数的频率代替1台机器维修次数发生的概率,记X表示这2台机器超过质保期后延保的两年内共需维修的次数。

(1)求X的分布列;

(2)以所需延保金及维修费用的期望值为决策依据,医院选择哪种延保方案更合算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,曲线由两个椭圆和椭圆组成,当成等比数列时,称曲线为“猫眼曲线”.若猫眼曲线过点,且的公比为.

(1)求猫眼曲线的方程;

(2)任作斜率为且不过原点的直线与该曲线相交,交椭圆所得弦的中点为,交椭圆所得弦的中点为,求证:为与无关的定值;

(3)若斜率为的直线为椭圆的切线,且交椭圆于点为椭圆上的任意一点(点与点不重合),求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的图象为C,如下结论中正确的是(

①图象C关于直线对称;②函数在区间内是增函数;

③图象C关于点对称;④由的图象向右平移个单位长度可以得到图象C

A.①③B.②③C.①②③D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一圆经过点,且它的圆心在直线.

I)求此圆的方程;

II)若点为所求圆上任意一点,且点,求线段的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图的多面体中,EF⊥平面AEBAEEBADEFEFBCBC=2AD=4EF=3AE=BE=2GBC的中点.

(Ⅰ)求证:AB∥平面DEG

(Ⅱ)求二面角C-DF-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,平面⊥平面

(Ⅰ)求证: ⊥平面

(Ⅱ)求证:

(Ⅲ)若点在棱上,且平面,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数f(x)的最小正周期和单调递减区间;

(2)求函数f(x)的最大值及取得最大值时x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin2x-2sin2x-a.

①若f(x)=0在x∈R上有解,则a的取值范围是______

②若x1,x2是函数y=f(x)在[0,]内的两个零点,则sin(x1+x2)=______

查看答案和解析>>

同步练习册答案