精英家教网 > 高中数学 > 题目详情
如图所示,PA为圆O的切线,A为切点,PO交圆O于B,C两点,PA=20,PB=10,∠BAC的角平分线与BC和圆O分别交于点D和E.
(Ⅰ)求证AB•PC=PA•AC
(Ⅱ)求AD•AE的值.
考点:与圆有关的比例线段
专题:直线与圆
分析:(1)由已知条件推导出△PAB∽△PCA,由此能够证明AB•PC=PA•AC.
(2)由切割线定理求出PC=40,BC=30,由已知条件条件推导出△ACE∽△ADB,由此能求出AD•AE的值.
解答: (1)证明:∵PA为圆O的切线,
∴∠PAB=∠ACP,又∠P为公共角,
∴△PAB∽△PCA,
AB
AC
=
PA
PC

∴AB•PC=PA•AC.…(4分)
(2)解:∵PA为圆O的切线,BC是过点O的割线,
∴PA2=PB•PC,
∴PC=40,BC=30,
又∵∠CAB=90°,∴AC2+AB2=BC2=900,
又由(1)知
AB
AC
=
PA
PC
=
1
2

∴AC=12
5
,AB=6
5

连接EC,则∠CAE=∠EAB,
∴△ACE∽△ADB,∴
AB
AE
=
AD
AC

AD•AE=AB•AC=6
5
×12
5
=360
.(10分)
点评:本题考查三角形相似的证明和应用,考查线段乘积的求法,是中档题,解题时要注意切割线定理的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+x-xlnx,
(1)若a=0,求函数f(x)的单调区间;
(2)若f(1)=2,且在定义域内f(x)≥bx2+2x恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设计一个计算2+4+6+…+100的程序框图和程序.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线x2=2py(p>0)的焦点为F,点A为抛物线上的一点,其纵坐标为1,|AF|=
5
4

(Ⅰ)求抛物线的方程;
(Ⅱ)设B,C为抛物线上不同于A的两点,且AB⊥AC,过B,C两点分别作抛物线的切线,记两切线的交点为D,求|OD|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某商场为了了解顾客的购物信息,随机的在商场收集了100位顾客购物的相关数据,整理如下:
一次购物款(单位:元)[0,50)[50,100)[100,150)[150,200)[200,+∞)
顾客人数m2030n10
统计结果显示:100位顾客中购物款不低于100元的顾客占60%.据统计该商场每日大约有5000名顾客,为了增加商场销售额度,对一次性购物不低于100元的顾客发放纪念品(每人一件).(注:视频率为概率)
(Ⅰ)试确定m,n的值,并估计该商场每日应准备纪念品的数量;
(Ⅱ)现有4人去该商场购物,求获得纪念品的人数ξ的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆M:
x2
a2
+
y2
b2
=1
(a>0,b>0)的离心率为
2
2
,且经过点P(1,
2
2
).过坐标原点的直线l1与l2均不在坐标轴上,l1与椭圆M交于A,C两点,l2与椭圆M交于B,D两点.
(1)求椭圆M的方程;
(2)若平行四边形ABCD为菱形,求菱形ABCD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足约束条件
x+y+5≥0
x-y≤0
y≤0
,则z=3x+4y的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

判断下列命题,其中正确的为
 

①若sinα>0,则α角的终边落在第一或第二象限;
②函数y=2x(x<1)的值域为{y|y<2};
③函数f(x)=loga
2-sinx
2+sinx
(a>0且a≠1)在定义域内是奇函数;
sinx-cosx=
2
2
,则sin3x-cos3x=
5
2
8

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题错误的是(  )
A、“x=1”是“x2-3x+2=0”的充分不必要条件
B、对于命题p:?x∈R,使得x2+x+1<0;则?p:?x∈R,均有x2+x+1≥0
C、命题“若m>0,则方程x2+x-m=0有实根”的逆否命题为“若方程x2+x-m=0无实根,则m≤0”
D、命题“若xy=0,则x、y中至少有一个为零”的否定式“若xy≠0,则x、y都不为零”

查看答案和解析>>

同步练习册答案