精英家教网 > 高中数学 > 题目详情
11.已知四边形ABCD为梯形,AB∥CD,∠ADC=60°,四边形ABEF为短形,且平面ABEF⊥平面ABCD,AD=DC、AF=AB=2,点G为AE的中点.
(1)求证:CG∥平面ADF
(2)求证:平面ACF⊥平面BCE.

分析 (1)取AF中点H,连接DH,GH,证明四边形CDHG为平行四边形,可得CG∥DH,利用线面平行的判定定理,即可证明:CG∥平面ADF;
(2)证明:FA⊥BC,AC⊥BC,即可证明BC⊥平面ACF,从而可得平面ACF⊥平面BCE.

解答 证明:(1)取AF中点H,连接DH,GH,
∵G为AE的中点,
∴GH∥EF,GH=$\frac{1}{2}$EF,
∴四边形CDHG为平行四边形,
∴CG∥DH,
∵CG?平面ADF,DH?平面ADF,
∴CG∥平面ADF
(2)∵四边形ABEF为矩形,且平面ABEF⊥平面ABCD,
∴FA⊥平面ABCD,
∴FA⊥BC,
∵四边形ABCD为梯形,AB∥CD,∠ADC=60°,
∴∠DAB=120°,
△ADC中,∠ADC=60°,AD=DC=2,
∴AC=2,∠DAC=60°,
△ABC中,AC=2,AB=4,∠CAB=60°,∴BC=$\sqrt{3}$,
∴AC2+BC2=AB2
∴AC⊥BC,
∴BC⊥平面ACF,
∵BC?平面BCE,
∴平面ACF⊥平面BCE.

点评 本题考查线面平行、平面与平面垂直,着重考查了直线与平面平行的判定和平面与平面垂直的判定等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设集合S=$\left\{{x|\frac{1}{2}<{2^x}<8}\right\}$,T={x|x<a或x>a+2},S∪T=R,则a的取值范围为(  )
A.(-1,1)B.[-1,1]C.(-∞,-1)∪(1,+∞)D.(-∞,-1]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.把一个底面边长和高都为6的正三棱锥(底面是正三角形,从顶点向底面作垂线,垂足是底面的中心的三棱锥)P-ABC的底面ABC放置在平面α上,现让三棱锥绕棱BC逆时针方向旋转,使侧面PBC落在α内,则在旋转过程中正三棱锥P-ABC在α上的正投影图的面积取值范围是(  )
A.[$\frac{54\sqrt{13}}{13}$,12$\sqrt{3}$]B.[$\frac{54\sqrt{13}}{13}$,9$\sqrt{3}$]C.[$\frac{48\sqrt{13}}{13}$,12$\sqrt{3}$]D.[$\frac{48\sqrt{13}}{13}$,3$\sqrt{39}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ax3+bx2+cx+d为奇函数,且在x=-1处取得极大值2.
(1)求f(x)的解析式.
(2)若f(x)+(m+2)x≤x2(ex-1)对于任意的x∈[0,+∞)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.函数f(x)=sinx.
(1)令f1(x)=f′(x),fn+1(x)=fn′(x),(n∈N*),f2015(x)的解析式;
(2)若f(x)+1≥ax+cosx在[0,π]上恒成立,求实数a的取值范围;
(3)证明:f($\frac{π}{2n+1}$)+f($\frac{2π}{2n+1}$)+…+f($\frac{(n+1)π}{2n+1}$)≥$\frac{{3\sqrt{2}(n+1)}}{4(2n+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)在R上可导,且f(x)>f′(x),则当a>b时,下列不等式成立的是(  )
A.eaf(a)>ebf(b)B.ebf(a)>eaf(b)C.ebf(b)>eaf(a)D.eaf(b)>ebf(a)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,等腰梯形ABEF中,AB∥EF,AB=2,AD=AF=1,AF⊥BF,O为AB的中点,矩形ABCD所在平面与平面ABEF互相垂直.
(1)求证:AF⊥平面CBF;
(2)在棱FC上是否存在M,使得OM∥平面DAF?
(3)求点A到平面BDF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在平面直角坐标系xOy中,已知点A(-2,2)、B(2,6),一条直线l过点(0,m),且与单位圆x2+y2=1恒相切,若有且只有两个点P满足:
①$\overrightarrow{PA}$$•\overrightarrow{PB}$=-4
②点P到直线l的距离为1
则实数m的取值范围是(-∞,-2)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(15-x),x≤0}\\{f(x-2),x>0}\end{array}\right.$ 则f(3)=4,f(f(2015))=log215.

查看答案和解析>>

同步练习册答案