精英家教网 > 高中数学 > 题目详情
8.设x,y满足约束条件$\left\{\begin{array}{l}x≥0\\ y≥x\\ 4x+3y≤12\end{array}\right.$,则2x-y的最小值是(  )
A.-4B.$\frac{12}{7}$C.0D.6

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}x≥0\\ y≥x\\ 4x+3y≤12\end{array}\right.$作出可行域如图,

令z=2x-y,化为y=2x-z.
由图可知,当直线y=2x-z过A(0,4)时,直线在y轴上的截距最大,z有最小值为-4.
故选:A.

点评 本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.定义:对于函数f(x),若存在非零常数M,T,使函数f(x)对于定义域内的任意实数x,都有f(x+T)-f(x)=M,则称函数f(x)是广义周期函数,其中称T为函数f(x)的广义周期,M称为周距.
(1)证明函数f(x)=x+(-1)x(x∈Z)是以2为广义周期的广义周期函数,并求出它的相应周距M的值;
(2)设函数y=g(x)是周期T=2的周期函数(即满足g(x+2)=g(x)),当函数f(x)=-2x+g(x)在[1,3]上的值域为[-3,3]时,求f(x)在[-9,9]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.试分别用两种方法证明:|sinα|+|cosα|≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是(  )
A.若α⊥γ,α⊥β,则γ∥βB.若m∥n,m?α,n?β,则α∥β
C.若m∥n,m⊥α,n⊥β,则α∥βD.若m∥n,m∥α,则n∥α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知甲圆锥的半径是乙圆锥半径的3倍,它的高只有乙圆锥高的$\frac{1}{3}$,则甲圆锥与乙圆锥的体积之比为(  )
A.1:1B.3:1C.9:1D.1:9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设斜率为2的直线l过抛物线y2=2px(p>0)的焦点F.且与抛物线交于A,B两点.过A,B两点分别作抛物线的准线的垂线,垂足分别为A1,B1,记四边形ABB1A1的面积为S.则$\overrightarrow{AB}•\overrightarrow{{A}_{1}{B}_{1}}$=$\frac{4\sqrt{5}}{5}$S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若不等式-2x2+bx+1>0的解集$\{x|-\frac{1}{2}<x<m\}$,则b,m值是(  )
A.1,1B.1,-1C.-1,1D.-1,-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知一个几何体的三视图及有关数据如图所示,则该几何体的体积为$\frac{4}{3}$$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.3名男生,2名女生排成一排照相,求:
(1)一共有多少种不同的排法?
(2)甲生不能站在排头,有多少种不同排法?
(3)女生必须相邻,有多少种不同排法?
(4)女生不能相邻,有多少种不同排法?

查看答案和解析>>

同步练习册答案