精英家教网 > 高中数学 > 题目详情
11.若圆锥的侧面展开图是半径为2、圆心角为90°的扇形,则这个圆锥的全面积是$\frac{5}{4}π$.

分析 根据圆锥的侧面积等于扇形的面积,再求出底面圆的面积,即可求出圆锥的表面积.

解答 解:∵圆锥的侧面展开图是圆心角为90°、半径为2的扇形,
∴圆锥的侧面积等于扇形的面积=$\frac{90×π×{2}^{2}}{360}$=π,
设圆锥的底面圆的半径为r,则
∵扇形的弧长为π,
∴2πr=π,
∴r=$\frac{1}{2}$,
∴底面圆的面积为$\frac{1}{4}π$,
∴圆锥的表面积为$π+\frac{1}{4}π$=$\frac{5}{4}π$,
故答案为:$\frac{5}{4}π$

点评 此题主要考查了圆锥的计算,根据圆锥的侧面积等于扇形的面积得出答案是解决问题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知数列{an}的通项公式为${a_n}={2^{5-n}}$,数列{bn}的通项公式为bn=n+k,设${c_n}=\left\{\begin{array}{l}{b_n},{a_n}≤{b_n}\\{a_n},{a_n}>{b_n}\end{array}\right.$,若在数列{cn}中,c5≤cn对任意n∈N*恒成立,则实数k的取值范围是(  )
A.-5≤k≤-4B.-4≤k≤-3C.-5≤k≤-3D.k=-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设i为虚数单位,则|1-i|=(  )
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求y=$\frac{{x}^{2}+5}{\sqrt{{x}^{2}+4}}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,已知四棱锥P-ABCD的底面是边长为a的菱形,且∠ABC=120°,PC⊥平面ABCD,PC=a,E为PA的中点.

(1)求证:平面EBD⊥平面ABCD;
(2)求点E到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.正四面体ABCD的表面积为S,其中四个面的中心分别是E、F、G、H.设四面体EFGH的表面积为T,则$\frac{T}{S}$等于$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列程序框图的功能是寻找使2×4×6×8×…×i>2015成立的i的最小正整数值,则输出框中应填(  )
A.输出i-2B.输出i-1C.输出iD.输出i+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若a、b、c∈R,a>b,则下列不等式成立的是(  )
A.$\frac{1}{a}$<$\frac{1}{b}$B.a2>b2C.$\frac{a}{{c}^{2}+1}$>$\frac{b}{{c}^{2}+1}$D.|a|>|b|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若曲线C1:y=ax2(a>0)与曲线C2:y=e-x有公共切线,则a的取值范围是[$\frac{{e}^{2}}{4}$,+∞).

查看答案和解析>>

同步练习册答案