精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左,右焦点分别为,直线与椭圆相交于两点;当直线经过椭圆的下顶点和右焦点时,的周长为,且与椭圆的另一个交点的横坐标为

1)求椭圆的方程;

2)点内一点,为坐标原点,满足,若点恰好在圆上,求实数的取值范围.

【答案】1;(2

【解析】

1)由椭圆的定义可知,焦点三角形的周长为,从而求出.写出直线的方程,与椭圆方程联立,根据交点横坐标为,求出,从而写出椭圆的方程;

2)设出PQ两点坐标,由可知点的重心,根据重心坐标公式可将点PQ两点坐标来表示.由点在圆O上,知点M的坐标满足圆O的方程,得.为直线l与椭圆的两个交点,用韦达定理表示,将其代入方程,再利用求得的范围,最终求出实数的取值范围.

解:(1)由题意知.

直线的方程为

∵直线与椭圆的另一个交点的横坐标为

解得(舍去)

∴椭圆的方程为

2)设

.

∴点的重心,

∵点在圆上,

代入方程,得

解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个盒子里装有个均匀的红球和个均匀的白球,每个球被取到的概率相等,已知从盒子里一次随机取出1个球,取到的球是红球的概率为,从盒子里一次随机取出2个球,取到的球至少有1个是白球的概率为.

1)求的值;

2)若一次从盒子里随机取出3个球,求取到的白球个数不小于红球个数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中,ACBC,且,AC=BC=2DE分别为ABPB中点,PD⊥平面ABCPD=3.

(1)求直线CE与直线PA夹角的余弦值;

(2)求直线PC与平面DEC夹角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市一所医院在某时间段为发烧超过38的病人特设发热门诊,该门诊记录了连续5天昼夜温差()与就诊人数的资料:

日期

1

2

3

4

5

昼夜温差()

8

10

13

12

7

就诊人数(人)

18

25

28

27

17

(1)求的相关系数,并说明昼夜温差()与就诊人数具有很强的线性相关关系.

(2)求就诊人数(人)关于出昼夜温差()的线性回归方程,预测昼夜温差为9时的就诊人数.

附:样本的相关系数为,当时认为两个变量有很强的线性相关关系.

回归直线方程为,其中.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线

1)当时,直线被圆截得的弦长为__________

2)若在圆上存在一点,在直线上存在一点,使得的中点恰为坐标原点,则实数的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在斜三棱柱中,是边长为2的正三角形,侧面为菱形,且,点OAC中点.

1)求证:平面ABC

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题:其中正确命题数是(

A.在线性回归模型中,相关系数表示解释变量对于预报变量变化的贡献率,越接近于1,表示回归效果越好

B.两个变量相关性越强,则相关系数的绝对值就越接近于1

C.在回归直线方程中,当解释变量每增加一个单位时,预报变量平均减少0.5个单位

D.对分类变量,它们的随机变量的观测值来说,观测值越小,有关系的把握程度越大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,在点处的切线方程为,求(1)实数的值;(2)函数的单调区间以及在区间上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点与椭圆的右焦点重合抛物线的动弦过点过点且垂直于弦的直线交抛物线的准线于点.

(Ⅰ)求抛物线的标准方程;

(Ⅱ)的最小值.

查看答案和解析>>

同步练习册答案